【題目】已知圓,過直線
上第一象限內的一動點
作圓
的兩條切線,切點分別為
,過
兩點的直線與坐標軸分別交于
兩點,則
面積的最小值為( )
A.B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知函數(
,
)的圖象與
軸交點的橫坐標構成一個公差為
的等差數列,把函數
的圖象沿
軸向左平移
個單位,縱坐標擴大到原來的2倍得到函數
的圖象,則下列關于函數
的命題中正確的是( )
A.函數是奇函數B.
的圖象關于直線
對稱
C.在
上是增函數D.當
時,函數
的值域是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓
:
的焦距為2,且過點
.
(1)求橢圓的方程;
(2)設橢圓的上頂點為
,右焦點為
,直線
與橢圓交于
,
兩點,問是否存在直線
,使得
為
的垂心,若存在,求出直線
的方程:若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓(
),點
為橢圓短軸的上端點,
為橢圓上異于
點的任一點,若
點到
點距離的最大值僅在
點為短軸的另一端點時取到,則稱此橢圓為“圓橢圓”,已知
.
(1)若,判斷橢圓
是否為“圓橢圓”;
(2)若橢圓是“圓橢圓”,求
的取值范圍;
(3)若橢圓是“圓橢圓”,且
取最大值,
為
關于原點
的對稱點,
也異于
點,直線
、
分別與
軸交于
、
兩點,試問以線段
為直徑的圓是否過定點?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求
在
處的切線方程;
(2)令,已知函數
有兩個極值點
,且
,求實數
的取值范圍;
(3)在(2)的條件下,若存在,使不等式
對任意
(取值范圍內的值)恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的參數方程為
(
為參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)寫出曲線的極坐標方程,并求出曲線
與
公共弦所在直線的極坐標方程;
(2)若射線與曲線
交于
兩點,與曲線
交于
點,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業在“精準扶貧”行動中,決定幫助一貧困山區將水果運出銷售.現有8輛甲型車和4輛乙型車,甲型車每次最多能運6噸且每天能運4次,乙型車每次最多能運10噸且每天能運3次,甲型車每天費用320元,乙型車每天費用504元.若需要一天內把180噸水果運輸到火車站,則通過合理調配車輛運送這批水果的費用最少為______元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com