【題目】如圖,某市擬在長為8 km的道路OP的一側修建一條運動賽道,賽道的前一部分為曲線段OSM,該曲線段為函數,
的圖象,且圖象的最高點為
;賽道的后一部分為折線段MNP.為保證參賽運動員的安全,限定
.
(1)求點M的坐標;
(2)應如何設計,才能使折線段賽道MNP最長?
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知橢圓
:
的離心率是
,斜率不為0的直線
:
與
相交于
、
兩點,與
軸相交于點
.
(1)若、
分別是
的左、右焦點,當
經過
且
時,求
的值;
(2)試探究,是否存在點,使得
?若存在,請寫出滿足條件的
、
的關系式;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】水車在古代是進行灌溉引水的工具,是人類的一項古老的發明,也是人類利用自然和改造自然的象征.如圖是一個半徑為R的水車,一個水斗從點A(3,-3)出發,沿圓周按逆時針方向勻速旋轉,且旋轉一周用時60秒.經過t秒后,水斗旋轉到P點,設P的坐標為(x,y),其縱坐標滿足y=f(t)=Rsin(ωt+φ)(t≥0,ω>0,|φ|<
).則下列敘述錯誤的是( )
A.R=6,ω=,φ=-
B.當t∈[35,55]時,點P到x軸的距離的最大值為6
C.當t∈[10,25]時,函數y=f(t)單調遞減
D.當t=20時,|PA|=6
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓(
)的離心率為
,且經過點
.
(1)求橢圓的方程;
(2)過點作直線
與橢圓
交于不同的兩點
,
,試問在
軸上是否存在定點
使得直線
與直線
恰關于
軸對稱?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的左、右焦點分別為
,
、
,
,點
在橢圓上,
為原點.
⑴若,
,求橢圓的離心率;
⑵若橢圓的右頂點為,短軸長為2,且滿足
為橢圓的離心率).
①求橢圓的方程;
②設直線:
與橢圓相交于
、
兩點,若
的面積為1,求實數
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com