【題目】設橢圓的左、右焦點分別為
,
、
,
,點
在橢圓上,
為原點.
⑴若,
,求橢圓的離心率;
⑵若橢圓的右頂點為,短軸長為2,且滿足
為橢圓的離心率).
①求橢圓的方程;
②設直線:
與橢圓相交于
、
兩點,若
的面積為1,求實數
的值.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AD=2.
(1)求該四棱錐P-ABCD的表面積和體積;
(2)求該四棱錐P-ABCD內切球的表面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某市擬在長為8 km的道路OP的一側修建一條運動賽道,賽道的前一部分為曲線段OSM,該曲線段為函數,
的圖象,且圖象的最高點為
;賽道的后一部分為折線段MNP.為保證參賽運動員的安全,限定
.
(1)求點M的坐標;
(2)應如何設計,才能使折線段賽道MNP最長?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若定義在R上的函數滿足:對于任意實數x、y,總有
恒成立,我們稱
為“類余弦型”函數.
已知
為“類余弦型”函數,且
,求
和
的值;
在
的條件下,定義數列
2,3,
求
的值.
若
為“類余弦型”函數,且對于任意非零實數t,總有
,證明:函數
為偶函數,設有理數
,
滿足
,判斷
和
的大小關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“互聯網+”是“智慧城市”的重要內容,A市在智慧城市的建設中,為方便市民使用互聯網,在主城區覆蓋了免費WiFi為了解免費WiFi在A市的使用情況,調查機構借助網絡進行了問卷調查,并從參與調查的網友中抽取了200人進行抽樣分析,得到如下列聯表(單位:人):
經常使用免費WiFi | 爾或不用免費WiFi | 合計 | |
45歲及以下 | 70 | 30 | 100 |
45歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據以上數據,判斷是否有90%的把握認為A市使用免費WiFi的情況與年齡有關;
(2)現從所抽取的45歲以上的市民中按是否經常使用WiFi進行分層抽樣再抽取5人.
(i)分別求這5人中經常使用,偶爾或不用免費WFi的人數;
(ii)從這5人中,再隨機選出2人各贈送1件禮品,求選出的2人中至少有1人經常使用免費WiFi的概率.
附:,其中
.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓以原點為中心,左焦點
的坐標是
,長軸長是短軸長的
倍,直線
與橢圓
交于點
與
,且
、
都在
軸上方,滿足
;
(1)求橢圓的標準方程;
(2)對于動直線,是否存在一個定點,無論
如何變化,直線
總經過此定點?若存在,求出該定點的坐標;若不存在,請說明理由;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex,g(x)=42,若在[0,+∞)上存在x1,x2,使得f(x1)=g(x2),則x2﹣x1的最小值是( 。
A.1+ln2B.1﹣ln2C.D.e﹣2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為
,
.
(1)求橢圓的方程;
(2)設直線與橢圓交于
,
兩點,
與直線
交于點M,且點P,M均在第四象限.若
的面積是
面積的2倍,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列結論中錯誤的是( )
A.命題“若,則
”的逆否命題是“若
,則
”
B.“”是“
”的充分條件
C.命題“若,則方程
有實根”的逆命題是真命題
D.命題“若,則
且
”的否命題是“若
,則
或
”
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com