精英家教網 > 高中數學 > 題目詳情

【題目】已知函數的圖象與直線3個交點,則實數a的取值范圍是________

【答案】

【解析】

分情況當三種情況,再根據的取值范圍以及二次函數的零點存在定理數形結合分析即可.

解法一:設,.

,顯然不成立.

,,

則由圖象可知的圖象顯然只有1個交點,

所以當,的圖象有2個交點,

即關于的方程上有兩個不相等的實數根,

所以,解得.

,,則由圖象可知的圖象顯然只有1個交點,

所以當,的圖象有2個交點,

即關于的方程上有兩個不相等的實數根,

所以,解得.

綜上,實數的取值范圍是.

解法二:設.

,,

上有1個零點,上有2個零點,

所以,解得.

,,

上有1個零點,上有2個零點,

所以,解得.

,上單調遞增,不合題意,舍去.

綜上,實數的取值范圍是.

解法三:原題等價于的圖象有3個交點.

,由圖象可知的圖象在上顯然只有1個交點,

只需的圖象在上有2個交點,

即關于的方程上有兩個不相等的實數根,

所以,解得.

,由圖象可知的圖象在上顯然只有1個交點,

只需的圖象在上有2個交點,

即關于的方程上有兩個不相等的實數根,

所以,解得.

綜上,實數的取值范圍是.

故答案為:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】1是某高架橋箱梁的橫截面,它由上部路面和下部支撐箱兩部分組成.如圖2,路面寬度,下部支撐箱CDEF為等腰梯形(),且.為了保證承重能力與穩定性,需下部支撐箱的面積為,高度為2m,若路面AB側邊CFDE,底部EF的造價分別為4a千元/m,5a千元/m6a千元/ma為正常數),

1)試用θ表示箱梁的總造價y(千元);

2)試確定cosθ的值,使總造價最低?并求最低總造價.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】農歷五月初五是端午節,民間有吃粽子的習慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節大家都會品嘗的食品,傳說這是為了紀念戰國時期楚國大臣、愛國主義詩人屈原,如圖所示,平行四邊形形狀的紙片是由六個邊長為的正三角形構成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為______;若該六面體內有一球,則該球體積的最大值為______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某生物公司將A型病毒疫苗用100只小白鼠進行科研和臨床試驗,得到統計數據如表:

未感染病毒

感染病毒

總計

未注射

10

x

A

注射

40

y

B

總計

50

50

100

現從所有試驗的小白鼠中任取一只,取得注射疫苗小白鼠的概率為

1)能否有99.9%的把握認為注射此型號疫苗有效?

2)現從感染病毒的小白鼠中任取3只進行病理分析,記已注射疫苗的小白鼠只數為ξ,求ξ的分布列和數學期望.

附:

PK2k0

0.10

0.010

0.001

k0

2.706

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在空間直角坐標系中,已知正四棱錐P-ABCD的所有棱長均為6,正方形ABCD的中心為坐標原點O,AD,BC平行于x軸,AB、CD平行于y軸,頂點Pz軸的正半軸上,點M、N分別在PA,BD上,且.

1)若,求直線MNPC所成角的大。

2)若二面角A-PN-D的平面角的余弦值為,求λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若實數滿足不等式組的最大值是(

A.15B.C.D.33

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形為菱形,且,,點在面上的投影恰在上,點中點.

1)求證:為線段的中點;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,E是邊長為1的正方形ABCD的邊CD上的動點(與點C,D不重合),,過點E的外角平分線于點F,若,則實數的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市舉行中學生詩詞大賽,分初賽和復賽兩個階段進行,規定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區間內,其頻率分布直方圖如圖.

Ⅰ)求獲得復賽資格的人數;

Ⅱ)從初賽得分在區間的參賽者中,利用分層抽樣的方法隨機抽取人參加學校座談交流,那么從得分在區間各抽取多少人?

Ⅲ)從(Ⅱ)抽取的人中,選出人參加全市座談交流,設表示得分在區間中參加全市座談交流的人數,求的分布列及數學期望EX.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视