【題目】在發生某公共衛生事件期間,有專業機構認為該事件在一段時間沒有發生大規模群體感染的標準為“連續10天,每天新增疑似病例不超過7人”.根據過去10天甲、乙、丙、丁四地新增疑似病例的數據,一定符合該標準的是____.(填序號)
①甲地:總體均值為3,中位數為4
②乙地:總體均值為1,總體方差大于0
③丙地:中位數為2,眾數為3
④丁地:總體均值為2,總體方差為3
科目:高中數學 來源: 題型:
【題目】田忌和齊王賽馬是歷史上有名的故事,設齊王的三匹馬分別為A1,A2,A3;田忌的三匹馬分別為B1,B2,B3;三匹馬各比賽一次,勝兩場者獲勝,雙方均不知對方的馬出場順序.
(1)若這六匹馬比賽優、劣程度可以用不等式表示:A1>B1>A2>B2>A3>B3,則田忌獲勝的概率是多大?
(2)若這六匹馬比賽優、劣程度可以用不等式表示:A1>B1>A2>B2>B3>A3,則田忌獲勝的概率是多大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】.某校從高二年級學生中隨機抽取40名學生,將他們的期中考試數學成績(滿分100分,成績均為不低于40分的整數)分成六段:[40,50),[50,60),[90,100]后得到如圖所示的頻率分布直方圖.
(1)求圖中實數a的值;
(2)若該校高二年級共有學生640人,試估計該校高二年級期中考試數學成績不低于60分的學生人數;
(3)若從數學成績在[40,50)與[90,100]兩個分數段內的學生中隨機選取兩名學生,求這兩名學生的數學成績之差的絕對值不大于10的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】獵人在相距100 m處射擊一野兔,命中的概率為,若第一次未擊中,則獵人進行第二次射擊,但距離已是150 m,若又未擊中,則獵人進行第三次射擊,但距離已是200 m,已知此獵人命中的概率與距離的平方成反比,求射擊不超過三次擊中野兔的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】二手車經銷商小王對其所經營的某一型號二手汽車的使用年數x(0<x≤10)與銷售價格y(單位:萬元/輛)進行整理,得到如表的對應數據:
使用年數 | 2 | 4 | 6 | 8 | 10 |
售價 | 16 | 13 | 9.5 | 7 | 4.5 |
(1)試求y關于x的回歸直線方程;(參考公式: =
,
=y﹣
)
(2)已知每輛該型號汽車的收購價格為w=0.01x3﹣0.09x2﹣1.45x+17.2萬元,根據(1)中所求的回歸方程,預測x為何值時,小王銷售一輛該型號汽車所獲得的利潤L(x)最大?(利潤=售價﹣收購價)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為
,求該四棱錐的側面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次水下考古活動中,某一潛水員需潛水50米到水底進行考古作業,其用氧量包含以下三個方面:
①下潛平均速度為米/分鐘,每分鐘的用氧量為
升;
②水底作業時間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.3升;
③返回水面時,平均速度為米/分鐘,每分鐘用氧量為0.32升;潛水員在此次考古活動中的總用氧量為
升.
(1)如果水底作業時間是10分鐘,將表示為
的函數;
(2)若,水底作業時間為20分鐘,求總用氧量
的取值范圍;
(3)若潛水員攜帶氧氣13.5升,請問潛水員最多在水下多少分鐘(結果取整數)?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com