【題目】已知函數. 求f(x)的單調區間和極值.
【答案】答案見解析
【解析】試題分析:
函數的定義域為(0,+∞),且,分類討論有:當a≤0時, f(x)在(0,+∞)為增函數,無極值;當a>0時, f(x)在(0,a)為減函數,f(x)在(a,+∞)為增函數,f(x)在(0,+∞)有極小值f(a)=ln a+1,無極大值.
試題解析:
,x∈(0,+∞).
①當a≤0時,f′(x)>0,f(x)在(0,+∞)為增函數,無極值.
②當a>0時,x∈(0,a)時,f′(x)<0,f(x)在(0,a)為減函數;
x∈(a,+∞)時,f′(x)>0,f(x)在(a,+∞)為增函數,
f(x)在(0,+∞)有極小值,無極大值,f(x)的極小值f(a)=ln a+1.
科目:高中數學 來源: 題型:
【題目】據某氣象中心觀察和預測:發生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數圖象如圖所示.過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側部分的面積即時間t(h)內沙塵暴所經過的路程s(km).
(1)當t=4時,求s的值;
(2)將s隨t變化的規律用數學關系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發生后多長時間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,等邊三角形ABC的中線AF與中位線DE相交于G,已知△A′ED是△AED繞DE旋轉過程中的一個圖形,給出以下四個命題:①AC∥平面A′DF;②平面A′GF⊥平面BCED;③動點A′在平面ABC上的射影在線段AF上;④異面直線A′E與BD不可能垂直.其中正確命題的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,曲線
,過點
的直線
的參數方程為
(
為參數),
與
分別交于
.
(1)寫出的平面直角坐標系方程和
的普通方程;
(2)若成等比數列,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an},{bn}滿足2Sn=(an+2)bn,其中Sn是數列{an}的前n項和.
(1)若數列{an}是首項為,公比為-
的等比數列,求數列{bn}的通項公式;
(2)若bn=n,a2=3,求證:數列{an}滿足an+an+2=2an+1,并寫出數列{an}的通項公式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com