【題目】如圖,等邊三角形ABC的中線AF與中位線DE相交于G,已知△A′ED是△AED繞DE旋轉過程中的一個圖形,給出以下四個命題:①AC∥平面A′DF;②平面A′GF⊥平面BCED;③動點A′在平面ABC上的射影在線段AF上;④異面直線A′E與BD不可能垂直.其中正確命題的個數是( )
A. 1 B. 2 C. 3 D. 4
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+2ax+3a+2.
(1)若函數f(x)的值域為[0,+∞),求a的值;
(2)若函數f(x)的函數值均為非負實數,求g(a)=2-a|a+3|的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的右焦點為
,且點
在橢圓
上,
為坐標原點.
(1)求橢圓的標準方程;
(2)設過定點的直線
與橢圓
交于不同的兩點
、
,且
,求直線
的斜率
的取值范圍;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準x(噸),一位居民的月用水量不超過x的部分按平價收費,超出x的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中a的值;
(2)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數,并說明理由;
(3)若該市政府希望使85%的居民每月的用水量不超過標準x(噸),估計x的值,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓C:過點M(2,0),且右焦點為F(1,0),過F的直線l與橢圓C相交于A、B兩點.設點P(4,3),記PA、PB的斜率分別為k1和k2.
(1)求橢圓C的方程;
(2)如果直線l的斜率等于-1,求出k1k2的值;
(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com