(12分)(2011•重慶)設f(x)=2x3+ax2+bx+1的導數為f′(x),若函數y=f′(x)的圖象關于直線x=﹣對稱,且f′(1)=0
(Ⅰ)求實數a,b的值
(Ⅱ)求函數f(x)的極值.
(Ⅰ)a=3 b=﹣12(Ⅱ)f(1)=﹣6
解析試題分析:(Ⅰ)先對f(x)求導,f(x)的導數為二次函數,由對稱性可求得a,再由f′(1)=0即可求出b
(Ⅱ)對f(x)求導,分別令f′(x)大于0和小于0,即可解出f(x)的單調區間,繼而確定極值.
解:(Ⅰ)因f(x)=2x3+ax2+bx+1,故f′(x)=6x2+2ax+b
從而f′(x)=6y=f′(x)關于直線x=﹣
對稱,
從而由條件可知﹣=﹣
,解得a=3
又由于f′(x)=0,即6+2a+b=0,解得b=﹣12
(Ⅱ)由(Ⅰ)知f(x)=2x3+3x2﹣12x+1
f′(x)=6x2+6x﹣12=6(x﹣1)(x+2)
令f′(x)=0,得x=1或x=﹣2
當x∈(﹣∞,﹣2)時,f′(x)>0,f(x)在(﹣∞,﹣2)上是增函數;
當x∈(﹣2,1)時,f′(x)<0,f(x)在(﹣2,1)上是減函數;
當x∈(1,+∞)時,f′(x)>0,f(x)在(1,+∞)上是增函數.
從而f(x)在x=﹣2處取到極大值f(﹣2)=21,在x=1處取到極小值f(1)=﹣6.
點評:本題考查函數的對稱性、函數的單調區間和極值,考查運算能力.
科目:高中數學 來源: 題型:解答題
已知函數.
(1)當時,討論函數
的單調性;
(2)當時,在函數
圖象上取不同兩點A、B,設線段AB的中點為
,試探究函數
在Q
點處的切線與直線AB的位置關系?
(3)試判斷當時
圖象是否存在不同的兩點A、B具有(2)問中所得出的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(14分)(2011•福建)已知a,b為常數,且a≠0,函數f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然對數的底數).
(I)求實數b的值;
(II)求函數f(x)的單調區間;
(III)當a=1時,是否同時存在實數m和M(m<M),使得對每一個t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點?若存在,求出最小的實數m和最大的實數M;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com