【題目】已知平面向量 ,
,
滿足|
|=|
|=
,|
|=1,若(
﹣
)(
﹣
)=0,則|
﹣
|的取值范圍是( )
A.[1,2]
B.[2,4]
C.[ ﹣1,
+1]
D.[ ﹣1,
+1]
科目:高中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2BC=4,E為邊AB的中點,將△ADE沿直線DE翻轉成△A1DE.若M為線段A1C的中點,則在△ADE翻折過程中: ①|BM|是定值;
②點M在某個球面上運動;
③存在某個位置,使DE⊥A1C;
④存在某個位置,使MB∥平面A1DE.
其中正確的命題是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=xln(x﹣1)﹣a(x﹣2). (Ⅰ)若a=2017,求曲線f(x)在x=2處的切線方程;
(Ⅱ)若當x≥2時,f(x)≥0,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校高一、高二、高三三個年級共有300名教師,為調查他們的備課時間情況,通過分層抽樣獲得了20名教師一周的備課時間,數據如下表(單位:小時):
高一年級 | 7 | 7.5 | 8 | 8.5 | 9 | |||
高二年級 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
高三年級 | 6 | 6.5 | 7 | 8.5 | 11 | 13.5 | 17 | 18.5 |
(1)試估計該校高三年級的教師人數;
(2)從高一年級和高二年級抽出的教師中,各隨機選取一人,高一年級選出的人記為甲,高二年級選出的人記為乙,假設所有教師的備課時間相對獨立,求該周甲的備課時間不比乙的備課時間長的概率;
(3)再從高一、高二、高三三個年級中各隨機抽取一名教師,他們該周的備課時間分別是8、9、10(單位:小時),這三個數據與表格中的數據構成的新樣本的平均數記為 ,表格中的數據平均數記為
,試判斷
與
的大小.(結論不要求證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數 在(0,2)上存在兩個極值點,則a的取值范圍是( )
A.(﹣∞,﹣ )
B.(﹣∞,﹣ )
C.(﹣∞,﹣ )∪(﹣
,﹣
)
D.(﹣e,﹣ )∪(1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=eax(a≠0).
(1)當 時,令
(x>0),求函數g(x)在[m,m+1](m>0)上的最小值;
(2)若對于一切x∈R,f(x)﹣x﹣1≥0恒成立,求a的取值集合;
(3)求證: .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com