【題目】已知函數 (其中
為自然對數的底數,
)
(1) 設函數,討論函數
的零點個數;
(2) 若時,不等式
恒成立,求
的取值范圍.
【答案】(1) 當時,零點個數為0; 當
時,零點個數為1;當
時,零點個數為2;(2)
【解析】試題分析: 要求
的零點個數,轉化為
即
的解的個數,然后分類討論(2)依據原函數的單調性轉化為
,然后分類討論
解析:(1)由得
(*),問題等價于方程(*)解的個數,
方程(*)的判別式,因此:
當時,方程(*)無解,函數
的零點個數為0;
當時,方程(*)有兩個相等實數根,函數
的零點個數為1;
當時,方程(*)有兩個不相等實數根,函數
的零點個數為2;
(2)由是單調遞增函數,
所以可化為
在
時恒成立.
分情況討論:
(1) 時,
在
時取得最小值
,由
得
;
(2) 時,
在
時取得最小值
,由
得
,無解
綜上所述: 的取值范圍是
科目:高中數學 來源: 題型:
【題目】已知命題p:x0∈R,x02﹣2x0+3≤0的否定是x∈R,x2﹣2x+3>0,命題q:雙曲線 ﹣y2=1的離心率為2,則下列命題中為真命題的是( )
A.p∨q
B.¬p∧q
C.¬p∨q
D.p∧q
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系內,已知是圓
上一點,折疊該圓兩次使點
分別與圓上不相同的兩點(異于點
)重合,兩次的折痕方程分別為
和
,若圓
上存在點
,使
,其中
的坐標分別為
,則實數
的取值集合為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓經過點
,
,且圓心在直線
上.
(1)求圓的方程;
(2)過點的直線與圓
交于
兩點,問在直線
上是否存在定點
,使得
恒成立?若存在,請求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義域分別是A,B的函數,
,規定:
現給定函數
(1) 若,寫出函數
的解析式;
(2) 當時,求問題(1)中函數
的值域;
(3) 請設計一個函數,使得函數
為偶函數且不是常數函數,并予以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數g(x)= ,f(x)=g(x)﹣ax.
(1)求函數g(x)的單調區間;
(2)若函數f(x)在(1,+∞)上是減函數,求實數a的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在中學生綜合素質評價某個維度的測評中,分“優秀、合格、尚待改進”三個等級進行學生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結果的影響,采用分層抽樣方法從高一年級抽取了45名學生的測評結果,并作出頻數統計表如下: 表1:男生表2:女生
等級 | 優秀 | 合格 | 尚待改進 | 等級 | 優秀 | 合格 | 尚待改進 | |
頻數 | 15 | x | 5 | 頻數 | 15 | 3 | y |
(1)從表二的非優秀學生中隨機選取2人交談,求所選2人中恰有1人測評等級為合格的概率;
(2)由表中統計數據填寫下邊2×2列聯表,并判斷是否有90%的把握認為“測評結果優秀與性別有關”.
男生 | 女生 | 總計 | |
優秀 | |||
非優秀 | |||
總計 |
參考數據與公式:
K2= ,其中n=a+b+c+d.
臨界值表:
P(K2>k0) | 0.05 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l1的參數方程為 ,(t為參數),直線l2的參數方程為
,(m為參數).設l1與l2的交點為P,當k變化時,P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,設l3:ρ(cosθ+sinθ)﹣ =0,M為l3與C的交點,求M的極徑.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com