【題目】已知數據,
,
,
是上海普通職
(
,
)個人的年收入,設這
個數據的中位數為
,平均數為
,方差為
,如果再加上世界首富的年收入
,則這
個數據中,下列說法正確( )
A.年收入平均數大大增大,中位數一定變大,方差可能不變
B.年收入平均數大大增大,中位數可能不變,方差變大
C.年收入平均數大大增大,中位數可能不變,方差也不變
D.年收入平均數大大增大,中位數可能不變,方差可能不變
科目:高中數學 來源: 題型:
【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區公眾對“車輛限行”的態度,隨機抽查了人,將調查情況進行整理后制成下表:
年齡(歲) | ||||||
頻數 | ||||||
贊成人數 |
()完成被調查人員的頻率分布直方圖.
()若從年齡在
,
的被調查者中各隨機選取
人進行追蹤調查,求恰有
人不贊成的概率.
()在
在條件下,再記選中的
人中不贊成“車輛限行”的人數為
,求隨機變量
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業參加項目生產的工人為
人,平均每人每年創造利潤
萬元.根據現實的需要,從
項目中調出
人參與
項目的售后服務工作,每人每年可以創造利潤
萬元(
),
項目余下的工人每人每年創造利圖需要提高
(1)若要保證項目余下的工人創造的年總利潤不低于原來
名工人創造的年總利潤,則最多調出多少人參加
項目從事售后服務工作?
(2)在(1)的條件下,當從項目調出的人數不能超過總人數的
時,才能使得
項目中留崗工人創造的年總利潤始終不低于調出的工人所創造的年總利潤,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某旅游勝地欲開發一座景觀山,從山的側面進行勘測,迎面山坡線由同一平面的兩段拋物線組成,其中
所在的拋物線以
為頂點、開口向下,
所在的拋物線以
為頂點、開口向上,以過山腳(點
)的水平線為
軸,過山頂(點
)的鉛垂線為
軸建立平面直角坐標系如圖(單位:百米).已知
所在拋物線的解析式
,
所在拋物線的解析式為
(1)求值,并寫出山坡線
的函數解析式;
(2)在山坡上的700米高度(點)處恰好有一小塊平地,可以用來建造索道站,索道的起點選擇在山腳水平線上的點
處,
(米),假設索道
可近似地看成一段以
為頂點、開口向上的拋物線
當索道在
上方時,索道的懸空高度有最大值,試求索道的最大懸空高度;
(3)為了便于旅游觀景,擬從山頂開始、沿迎面山坡往山下鋪設觀景臺階,臺階每級的高度為20厘米,長度因坡度的大小而定,但不得少于20厘米,每級臺階的兩端點在坡面上(見圖).試求出前三級臺階的長度(精確到厘米),并判斷這種臺階能否一直鋪到山腳,簡述理由?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線的方程為
,其中常數
,
是拋物線
的焦點.
(1)若直線被拋物線
所截得的弦長為6,求
的值;
(2)設是點
關于頂點
的對稱點,
是拋物線
上的動點,求
的最大值;
(3)設,
、
是兩條互相垂直,且均經過點
的直線,
與拋物線
交于點
、
,
與拋物線
交于點
、
,若點
滿足
,求點
的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圖1是某斜拉式大橋圖片,為了了解橋的一些結構情況,學校數學興趣小組將大橋的結構進行了簡化,取其部分可抽象成圖2所示的模型,其中橋塔、
與橋面
垂直,通過測量得知
,
,當
為
中點時,
.
(1)求的長;
(2)試問在線段
的何處時,
達到最大.
圖1 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,一藝術拱門由兩部分組成,下部為矩形的長分別為
米和
米,上部是圓心為
的劣弧
,
(1)求圖1中拱門最高點到地面的距離:
(2)現欲以點為支點將拱門放倒,放倒過程中矩形
所在的平面始終與地面垂直,如圖2、圖3、圖4所示,設
與地面水平線
所成的角為
.若拱門上的點到地面的最大距離恰好為
到地面的距離,試求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于給定的正整數,若數列
滿足
對任意正整數
恒成立,則稱數列
是
數列,若正數項數列
,滿足:
對任意正整數
恒成立,則稱
是
數列;
(1)已知正數項數列是
數列,且前五項分別為
、
、
、
、
,求
的值;
(2)若為常數,且
是
數列,求
的最小值;
(3)對于下列兩種情形,只要選作一種,滿分分別是 ①分,②
分,若選擇了多于一種情形,則按照序號較小的解答記分.
① 證明:數列是等差數列的充要條件為“
既是
數列,又是
數列”;
②證明:正數項數列是等比數列的充要條件為“數列
既是
數列,又是
數列”.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com