【題目】已知函數f(x)=2a·4x-2x-1.
(1)當a=1時,解不等式f(x)>0;
(2)當a=,x∈[0,2]時,求f(x)的值域.
【答案】(1)(0,+∞);(2)[-1,11].
【解析】
(1)將a=1代入,求出函數的解析式,將2x看作一個整體,根據二次不等式的解法,求出2x的范圍,結合指數函數的圖象和性質,可得答案.
(2)將a=代入,求出函數的解析式,利用換元法,將問題轉化為二次函數在定區間上的最值問題,求出函數最值后,得到函數的值域.
(1)當a=1時,f(x)=2·4x-2x-1.
f(x)>0,即2·(2x)2-2x-1>0,
解得2x>1或2x<- (舍去),
∴x>0,∴不等式f(x)>0的解集為(0,+∞).
(2)當a=時,f(x)=4x-2x-1,x∈[0,2].
設t=2x.∵x∈[0,2],∴t∈[1,4].
∴y=g(t)=t2-t-1 (1≤t≤4).
畫出g(t)=t2-t-1 (1≤t≤4)的圖像(如圖),
可知g(t)min=g(1)=-1,g(t)max=g(4)=11,
∴f(x)的值域為[-1,11].
科目:高中數學 來源: 題型:
【題目】德國著名數學家狄利克雷在數學領域成就顯著,以其命名的函數被稱為狄利克雷函數,其中R為實數集,Q為有理數集,以下命題正確的個數是( )
下面給出關于狄利克雷函數f(x)的五個結論:
①對于任意的x∈R,都有f(f(x))=1;
②函數f(x)偶函數;
③函數f(x)的值域是{0,1};
④若T≠0且T為有理數,則f(x+T)=f(x)對任意的x∈R恒成立;
⑤在f(x)圖象上存在不同的三個點A,B,C,使得△ABC為等邊角形.
A.2B.3C.4D.5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)討論函數的單調性;
(2)當時,若函數
的導函數
的圖象與
軸交于
,
兩點,其橫坐標分別為
,
,線段
的中點的橫坐標為
,且
,
恰為函數
的零點,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知無窮數列的前n項和為
,記
,
,…,
中奇數的個數為
.
(Ⅰ)若= n,請寫出數列
的前5項;
(Ⅱ)求證:"為奇數,
(i = 2,3,4,...)為偶數”是“數列
是單調遞增數列”的充分不必要條件;
(Ⅲ)若,i=1, 2, 3,…,求數列
的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數和中位數;
(3)在月平均用電量為,
,
,
的四組用戶中,用分層抽樣的方法抽取
戶居民,則月平均用電量在
的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,EB垂直于菱形ABCD所在平面,且EB=BC=2,∠BAD=60°,點G、H分別為邊CD、DA的中點,點M是線段BE上的動點.
(I)求證:GH⊥DM;
(II)當三棱錐D-MGH的體積最大時,求點A到面MGH的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com