【題目】已知定義在上的函數
,其導函數
的大致圖像如圖所示,則下列敘述正確的是().
(1)
(2)函數在
上遞增,在
上遞減
(3)的極值點為c,e
(4)的極大值為
A. (1)(2) B. (2)(3) C. (3) D. (1)(4)
科目:高中數學 來源: 題型:
【題目】某種新產品投放市場的100天中,前40天價格呈直線上升,而后60天其價格呈直線下降,現統計出其中4天的價格如下表:
時間 | 第4天 | 第32天 | 第60天 | 第90天 |
價格(千元) | 23 | 30 | 22 | 7 |
(1)寫出價格關于時間
的函數關系式;(
表示投放市場的第
天);
(2)銷售量與時間
的函數關系:
,則該產品投放市場第幾天銷售額最高?最高為多少千元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“龜兔賽跑”講述了這樣的故事:領先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當它醒來時,發現烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點.用,
分別表示烏龜和兔子所行的路程,
為時間,則與故事情節相吻合的是( 。
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,將長為4,寬為1的長方形折疊成長方體ABCD-A1B1C1D1的四個側面,記底面上一邊,連接A1B,A1C,A1D.
(1)求長方體ABCD-A1B1C1D1體積的最大值 ;
(2)當長方體ABCD-A1B1C1D1的體積最大時,求二面角B-A1C-D的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是某市2017年3月1日至16日的空氣質量指數趨勢圖,空氣質量指數小于
表示空氣質量優良,空氣質量指數大于
表示空氣重度污染,某人隨機選擇3月1日至3月14日中的某一天到達該市.
(1)若該人到達后停留天(到達當日算1天),求此人停留期間空氣質量都是重度污染的概率;
(2)若該人到達后停留3天(到達當日算1天〉,設是此人停留期間空氣重度污染的天數,求
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解甲、乙兩個工廠生產的輪胎的寬度是否達標,分別從兩廠隨機各選取了個輪胎,將每個輪胎的寬度(單位:
)記錄下來并繪制出如下的折線圖:
(1)分別計算甲、乙兩廠提供的個輪胎寬度的平均值;
(2)輪胎的寬度在內,則稱這個輪胎是標準輪胎.
(i)若從甲乙提供的個輪胎中隨機選取
個,求所選的輪胎是標準輪胎的概率
;
(ii)試比較甲、乙兩廠分別提供的個輪胎中所有標準輪胎寬度的方差大小,根據兩廠的標準輪胎寬度的平均水平及其波動情況,判斷這兩個工廠哪個廠的輪胎相對更好?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場建成后對外出租,租賃付費按年收取,標準為:每一個商鋪租賃不超過1年收費20萬元,超過1年的部分每年收取15萬元(不足1年按1年計算).現甲、乙兩人從該商場各自租賃一個商鋪,兩人的租賃時間都不超過3年.設甲、乙租賃時間不超過1年的概率分別為,
;租賃時間1年以上且不超過2年的概率分別為
,
.甲、乙租賃相互獨立.
(1)求甲租賃付費為50萬元的概率;
(2)求甲、乙兩人租賃付費相同的概率;
(3)設甲、乙兩人租賃付費之和為隨機變量,求
的分布列與數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】基于移動互聯技術的共享單車被稱為“新四大發明”之一,短時間內就風靡全國,帶給人們新的出行體驗.某共享單車運營公司的市場研究人員為了解公司的經營狀況,對該公司最近六個月內的市場占有率進行了統計,結果如下表:
月份 | 2017.8 | 2017.9 | 2017.10 | 2017.11 | 2017.12 | 2018.1 |
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
市場占有率 | 11 | 13 | 16 | 15 | 20 | 21 |
(1)請在給出的坐標紙中作出散點圖,并用相關系數說明可用線性回歸模型擬合月度市場占有率與月份代碼
之間的關系;
(2)求關于
的線性回歸方程,并預測該公司2018年2月份的市場占有率;
(3)根據調研數據,公司決定再采購一批單車擴大市場,現有采購成本分別為1000元/輛和800元/輛的兩款車型報廢年限各不相同.考慮到公司的經濟效益,該公司決定先對兩款單車各100輛進行科學模擬測試,得到兩款單車使用壽命頻數表如下:
經測算,平均每輛單車每年可以為公司帶來收入500元.不考慮除采購成本之外的其他成本,假設每輛單車的使用壽命都是整數年,且用頻率估計每輛單車使用壽命的概率,以每輛單車產生利潤的期望值為決策依據.如果你是該公司的負責人,你會選擇采購哪款車型?
參考數據: ,
,
.
參考公式:相關系數;
回歸直線方程為,其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(-2,0),B(2,0),曲線C上的動點P滿足.
(1)求曲線C的方程;
(2)若過定點M(0,-2)的直線l與曲線C有公共點,求直線l的斜率k的取值范圍;
(3)若動點Q(x,y)在曲線C上,求的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com