【題目】選修4-4:坐標系與參數方程.
在平面直角坐標系中,傾斜角為
的直線
的參數方程為
(
為參數).以坐標原點為極點,以
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程是
.
(1)寫出直線的普通方程和曲線
的直角坐標方程;
(2)已知點.若點
的極坐標為
,直線
經過點
且與曲線
相交于
兩點,設線段
的中點為
,求
的值.
【答案】(1); 線
的直角坐標方程為
;(2)
.
【解析】試題分析:(1)直線的參數方程中的參數為
,所以消
得到直線的普通方程;根據
,
,極坐標方程兩邊同時乘以
,化簡為曲線
的普通方程;(2)根據直線
過點
,可知直線的傾斜角,代入直線的參數方程,得到
,代入曲線
的極坐標方程,轉化為關于
的一元二次方程,根據
的幾何意義可知
.
試題解析:(1)∵直線的參數方程為
(
為參數),
∴直線的普通方程為
....................2分
由,得
,即
,
∴曲線的直角坐標方程為
.............................4分
(2)∵點的極坐標為
,∴點
的直角坐標為
...............5分
∴,直線
的傾斜角
.
∴直線的參數方程為
(
為參數)...................7分
代入,得
.....................8分
設兩點對應的參數為
.
∵為線段
的中點,
∴點對應的參數值為
.
又點,則
.........................10分
科目:高中數學 來源: 題型:
【題目】某家電公司銷售部門共有200位銷售員,每位部門對每位銷售員都有1400萬元的年度銷售任務,已知這200位銷售員去年完成銷售額都在區間(單位:百萬元)內,現將其分成5組,第1組,第2組,第3組,第4組,第5組對應的區間分別為
,
,
,
,
,繪制出頻率分布直方圖.
(1)求的值,并計算完成年度任務的人數;
(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應抽取的人數;
(3)現從(2)中完成年度任務的銷售員中隨機選取2位,獎勵海南三亞三日游,求獲得此獎勵的2位銷售員在同一組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合A={x∈R|2x﹣8=0},B={x∈R|x2﹣2(m+1)x+m2=0}
(1)若m=4,求A∪B;
(2)若A∪B=A,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是首項為a1= ,公比q=
的等比數列,設bn+2=3log
an(n∈N*),數列{cn}滿足cn=anbn .
(1)求證:{bn}是等差數列;
(2)求數列{cn}的前n項和Sn;
(3)若cn≤ +m﹣1對一切正整數n恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】祖暅是南北朝時代的偉大科學家,5世紀末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積都相等,那么這兩個幾何體的體積一定相等.現有以下四個幾何體:圖①是從圓柱中挖出一個圓錐所得的幾何體;圖②、圖③、圖④分別是圓錐、圓臺和半球,則滿足祖暅原理的兩個幾何體為( 。
A. ①② B. ①③ C. ②④ D. ①④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=3x2﹣2ax﹣b,其中a,b是實數.
(1)若不等式f(x)≤0的解集是[0,6],求ab的值;
(2)若b=3a,對任意x∈R,都有f(x)≥0,且存在實數x,使得f(x)≤2﹣ a,求實數a的取值范圍;
(3)若方程有一個根是1,且a,b>0,求 的最小值,及此時a,b的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com