精英家教網 > 高中數學 > 題目詳情

【題目】已知定義在R上的函數f(x)=2x
(1)若f(x)= ,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數m的取值范圍.

【答案】
(1)解:由題意:f(x)=2x 定義在R上的函數,

當x≤0時,f(x)=0,無解

當x>0時,f(x)=2x

由f(x)= ,即:2x =

化簡:222x﹣32x﹣2=0

因式分解:(2x﹣2)(22x+2)=0

解得:解得2x=2或2x=﹣ ,

∵2x>0,

故:x=1


(2)解:當t∈[1,2]時,

f(2t)= ,f(t)=

那么: )≥0

整理得:m(22t﹣1)≥﹣(24t﹣1)

∵22t﹣1>0,∴m≥﹣(22t+1)恒成立即可.

∵t∈[1,2],∴﹣(22t+1)∈[﹣17,﹣5].

要使m≥﹣(22t+1)恒成立,只需m≥﹣5

故:m的取值范圍是[﹣5,+∞)


【解析】(1)化簡f(x)去掉絕對值,直接進行帶值計算即可.(2)求出f(2t),f(t)帶入,構造指數函數,利用指數函數的圖象及性質對t∈[1,2]恒成立求解.
【考點精析】本題主要考查了函數單調性的判斷方法的相關知識點,需要掌握單調性的判定法:①設x1,x2是所研究區間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列各小題中,P是q的充要條件的是(08年山東理改編)
1)p:m<﹣2或m>6;q:y=x2+mx+m+3有兩個不同的零點.
2)p: =1,q:y=f(x)是偶函數.
3)p:cosα=cosβ,q:tanα=tanβ.
4)p:A∩B=A,q:CUBCUA.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)= (a>0,b>0).
(1)當a=b=1時,證明:f(x)不是奇函數;
(2)設f(x)是奇函數,求a與b的值;
(3)在(2)的條件下,試證明函數f(x)的單調性,并解不等式f(1﹣m)+f(1+m2)<0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)=x2+a|x|+2,x∈R在區間[3,+∞)和[﹣2,﹣1]上均為增函數,則實數a的取值范圍是(
A.[﹣ ,﹣3]
B.[﹣6,﹣4]
C.[﹣3,﹣2 ]
D.[﹣4,﹣3]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對任意實數x都成立.
(1)求函數f(x)的解析式;
(2)當t∈[﹣1,3]時,求y=f(2t)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線y2=﹣x與直線y=k(x+1)(k≠0)相交于A、B兩點,O是坐標原點.
(1)當k= 時,求|AB|的長;
(2)求證無論k為何值都有OA⊥OB.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=cos2x+sinx
(1)求f( )的值;
(2)求f(x)在[﹣ , ]上的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓 過點,其左、右焦點分別為,離心率 是橢圓右準線上的兩個動點,且

1)求橢圓的方程;

2)求的最小值;

3)以為直徑的圓是否過定點?請證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=loga(1﹣x)+loga(x+3),(0<a<1).
(1)求函數f(x)的定義域;
(2)若函數f(x)的最小值為﹣2,求a的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视