【題目】如圖,在底面為矩形的四棱錐中,平面
平面
.
(1)證明:;
(2)若,
,設
為
中點,求直線
與平面
所成角的余弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)由平面平面
可得
面
,從而可得
;
(2)建立空間直角坐標系,求出向量及面
法向量
,代入公式即可得到結果.
(1)依題意,面面
,
,
∵面
,面
面
,
∴面
.
又面
,
∴.
(2)解法一:向量法
在中,取
中點
,∵
,
∴,∴
面
,
以為坐標原點,分別以
為
軸,過點
且平行于
的直線為
軸,
所在的直線為
軸,建立如圖空間直角坐標系,
設,∵
,∴
,
∴,
,
,
,
,
∴,
,
.
設面法向量為
,
則,解得
.
設直線與平面
所成角為
,
則,
因為,∴
.
所以直線與平面
所成角的余弦值為
.
(2)解法二:幾何法
過作
交于點
,則
為
中點,
過作
的平行線,過
作
的平行線,交點為
,連結
,
過作
交于點
,連結
,
連結,取中點
,連結
,
,
四邊形為矩形,所以
面
,所以
,
又,所以
面
,
所以為線
與面
所成的角.
令,則
,
,
,
由同一個三角形面積相等可得,
為直角三角形,由勾股定理可得
,
所以,
又因為為銳角,所以
,
所以直線與平面
所成角的余弦值為
.
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸是短軸的兩倍,以短軸一個頂點和長軸一個頂點為端點的線段作直徑的圓的周長等于
,直線l與橢圓C交于
兩點,其中直線l不過原點.
(1)求橢圓C的方程;
(2)設直線的斜率分別為
,其中
且
.記
的面積為S.分別以
為直徑的圓的面積依次為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學計劃在一年級開設冰球課程,為了解學生對冰球運動的興趣,隨機從該校一年級學生中抽取了100人進行調查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣額.
(1)完成列聯表,并回答能否有
的把握認為“對冰球是否有興趣與性別有關”?
有興趣 | 沒興趣 | 合計 | |
男 | 55 | ||
女 | |||
合計 |
(2)已知在被調查的女生中有5名數學系的學生,其中3名對冰球有興趣,現在從這5名學生中隨機抽取3人,求至少有2人對冰球有興趣的概率.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024> | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從四所高校中選2所.
(Ⅰ)求甲、乙、丙三名同學都選高校的概率;
(Ⅱ)若已知甲同學特別喜歡高校,他必選
校,另在
三校中再隨機選1所;而同學乙和丙對四所高校沒有偏愛,因此他們每人在四所高校中隨機選2所.
(ⅰ)求甲同學選高校且乙、丙都未選
高校的概率;
(ⅱ)記為甲、乙、丙三名同學中選
校的人數,求隨機變量
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC-中,
平面ABC,D,E,F,G分別為
,AC,
,
的中點,AB=BC=
,AC=
=2.
(Ⅰ)求證:AC⊥平面BEF;
(Ⅱ)求二面角B-CD-C1的余弦值;
(Ⅲ)證明:直線FG與平面BCD相交.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知圓
與直線
相切,點A為圓
上一動點,
軸于點N,且動點滿足
,設動點M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設P,Q是曲線C上兩動點,線段的中點為T,
,
的斜率分別為
,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓C:的短軸長為2,傾斜角為
的直線l與橢圓C相交于A,B兩點,線段AB的中點為M,且點M與坐標原點O連線的斜率為
.
(1)求橢圓C的標準方程;
(2)若,P是以AB為直徑的圓上的任意一點,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓過點
.
(Ⅰ)求橢圓的方程,并求其離心率;
(Ⅱ)過點作
軸的垂線
,設點
為第四象限內一點且在橢圓
上(點
不在直線
上),直線
關于
的對稱直線
與橢圓交于另一點
.設
為坐標原點,判斷直線
與直線
的位置關系,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中, 平面
平面
,
.
(1)求證:平面
;
(2)求直線與平面
所成角的正弦值;
(3)在棱上是否存在點
,使得
平面
?若存在, 求
的值;若不存在, 說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com