【題目】將編號為1,2,…,18的18名乒乓球運動員分配在9張球臺上進行單打比賽,規定每一張球臺上兩選手編號之和均為大于4的平方數.記{7號與18號比賽}為事件p.則p為( 。
A. 不可能事件 B. 概率為的隨機事件
C. 概率為的隨機事件 D. 必然事件
【答案】D
【解析】
由于編號最大的兩數之和為,所以,同一張球臺上兩選手編號之和只能取3個平方數:25、16、9.現設同一張球臺上兩選手編號和為25、16、9的分別有x、y、z(x、y、z均為非負整數)個.依題意有
,即
.得
.
又由,知x只能取非負整數0,1,2,3,4,5.逐一代入檢驗,可得方程唯一的非負整數解
,
,
.
下面討論9張球臺上的選手對陣情況.
(1)由x=3,知平方數為25只能有3個,而編號不小于16的3個選手18,17,16對應的平方數又只能為25,故“兩選手編號和為25”的只能是:18與7對陣,17與8對陣,16與9對陣.
(2)由,知去掉18,17,16,9,8,7后剩下的12個選手對應的平方數能且只能為16,有:1與15對陣,2與14對陣,3與13對陣,4與12對陣,5與11對陣,6與10對陣.
所以,規定能夠實現,且實現方案是唯一的.9張球臺上選手對陣情況為:.
事件p為必然事件.選D.
科目:高中數學 來源: 題型:
【題目】為了研究經常使用手機是否對數學學習成績有影響,某校高二數學研究性學習小組進行了調查,隨機抽取高二年級50名學生的一次數學單元測試成績,并制成下面的2×2列聯表:
及格 | 不及格 | 合計 | |
很少使用手機 | 20 | 5 | 25 |
經常使用手機 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
則有( 。┑陌盐照J為經常使用手機對數學學習成績有影響.
參考公式:,其中
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.97.5%B.99%C.99.5%D.99.9%
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個命題:
①函數的最大值為1;
②已知集合,則集合A的真子集個數為3;
③若為銳角三角形,則有
;
④“”是“函數
在區間
內單調遞增”的充分必要條件.
其中正確的命題是______.(填序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
.
(1)若拋物線的焦點與
的焦點重合,求
的標準方程;
(2)若的上頂點
、右焦點
及
軸上一點
構成直角三角形,求點
的坐標;
(3)若為
的中心,
為
上一點(非
的頂點),過
的左頂點
,作
,
交
軸于點
,交
于點
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖為我國數學家趙爽(約3世紀初)在為《周髀算經》作注時驗證勾股定理的示意圖,現在提供5種顏色給其中5個小區域涂色,規定每個區域只涂一種顏色、相鄰區域顏色不同,則區域不同涂色的方法種數為( )
A.360B.400C.420D.480
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 的離心率為
,過橢圓的焦點且與長軸垂直的弦長為1.
(1)求橢圓C的方程;
(2)設點M為橢圓上第一象限內一動點,A,B分別為橢圓的左頂點和下頂點,直線MB與x軸交于點C,直線MA與y軸交于點D,求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】試問:能否把2008表示成的形式?如果可以,這種表示方式是否有無限多個?其中,m、n均為大于100且小于170的正整數,且
;
均為兩兩不相等的小于6的正有理數,且
均為大于1且小于5的正整數,同時,
兩兩不相等,
也兩兩不相等請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com