【題目】定義平面向量之間的一種運算“⊙”如下:對任意的 ,令
,下面說法錯誤的是( )
A.若 與
共線,則
⊙
=0
B.⊙
=
⊙
C.對任意的λ∈R,有 ⊙
=
⊙
)
D.( ⊙
)2+(
)2=|
|2|
|2
【答案】B
【解析】解:對于A,若 與
共線,則有
,故A正確;
對于B,因為 ,而
,所以有
,故選項B錯誤,
對于C, ⊙
=λqm﹣λpn,而
⊙
)=λ(qm﹣pn)=λqm﹣λpn,故C正確,
對于D,( ⊙
)2+(
)2=(qm﹣pn)2+(mp+nq)2=(m2+n2)(p2+q2)=|
|2|
|2 , D正確;
故選B.
根據題意對選項逐一分析.若 與
共線,則有
,故A正確;
因為 ,而
,所以有
,故選項B錯誤,
對于C, ⊙
=λqm﹣λpn,而
⊙
)=λ(qm﹣pn)=λqm﹣λpn,故C正確,
對于D,( ⊙
)2+(
)2=(qm﹣pn)2+(mp+nq)2=(m2+n2)(p2+q2)=|
|2|
|2 , D正確;
得到答案.
科目:高中數學 來源: 題型:
【題目】如圖,三棱錐P﹣ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E為PC的中點,M為AB的中點,點F在PA上,且2PF=FA.
(1)求證:BE⊥平面PAC;
(2)求證:CM∥平面BEF;
(3)求平面ABC與平面BEF所成的二面角的平面角(銳角)的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點P為DD1的中點.
(1)求證:直線BD1∥平面PAC;
(2)求證:平面PAC⊥平面BDD1B1;
(3)求CP與平面BDD1B1所成的角大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,且bsinA= acosB.
(1)求角B的大;
(2)若b=3,sinC=2sinA,分別求a和c的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(Rt△FHE,H是直角頂點)來處理污水,管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F分別落在線段BC,AD上.已知AB=20米, 米,記∠BHE=θ.
(1)試將污水凈化管道的長度L表示為θ的函數,并寫出定義域;
(2)若 ,求此時管道的長度L;
(3)當θ取何值時,污水凈化效果最好?并求出此時管道的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設直線l的方程為(a+1)x+y+2﹣a=0(a∈R).
(1)若l在兩坐標軸上的截距相等,求l的方程;
(2)若l不經過第二象限,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=|logax|(0<a<1)的定義域為[m,n](m<n),值域為[0,1],若n﹣m的最小值為 , 則實數a的值為( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com