【題目】如圖,在等腰梯形中,
,
,現以
為折痕把
折起,使點
到達點
的位置,且
.
(1)證明:平面平面
;
(2)若為棱
上一點,且平面
分三棱錐
所得的上下兩部分的體積比為
,求二面角
的余弦值.
科目:高中數學 來源: 題型:
【題目】將一枚質地均勻的硬幣向上拋擲三次,下列兩個事件中,是對立事件的是( )
A.事件:“恰有兩次正面向上”,事件
:“恰有兩次反面向上”
B.事件:“恰有兩次正面向上”,事件
:“恰有一次正面向上”
C.事件:“至少有一次正面向上”,事件
:“至多一次正面向上”
D.事件:“至少有一次正面向上”,事件
:“恰有三次反面向上”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}為正項等比數列,a1+a2=6,a3=8.
(1)求數列{an}的通項公式an;
(2)若bn=,且{bn}前n項和為Tn,求Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4—4:坐標系與參數方程]
在直角坐標系中,曲線
的方程為
.以坐標原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求的直角坐標方程;
(2)若與
有且僅有三個公共點,求
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】重慶市第八中學校為了解學生喜愛運動是否與性別有關,從全校學生中隨機抽取50名學生進行問卷調查,得到如圖所示的列聯表.
喜愛運動 | 不喜愛運動 | 合計 | |
男生 | 22 | 8 | 30 |
女生 | 8 | 12 | 20 |
合計 | 30 | 20 | 50 |
附:,
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)能否有97.5%以上的把握認為“喜愛運動”與“性別”有關;
(2)用分層抽樣的方法從被調查的20名女生中抽取5名進行問卷調查,求抽取喜愛運動的女生、不喜愛運動的女生各有多少的人;
(3)在(2)抽取的女生中,隨機選出2人進行座談,求至少有1名是喜愛運動的女生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,矩形中,
,
是
邊上異于端點的動點,
,將矩形
沿
折疊至
處,使面
(如圖2).點
滿足
,
.
(1)證明:;
(2)設,當
為何值時,四面體
的體積最大,并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點、
,若直線
的圖像上存在點
,使得
成立,則說直線
是“
型直線”.給出下列直線:
(1);
(2);
(3);
(4);
(5)(常數
)
其中代表“型直線”的序號是___________.(要求寫出所有
型直線的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是直線
(
)上一動點,
、
是圓
:
的兩條切線,
、
為切點,
為圓心,若四邊形
面積的最小值是
,則
的值是( )
A. B.
C.
D.
【答案】D
【解析】∵圓的方程為: ,
∴圓心C(0,1),半徑r=1.
根據題意,若四邊形面積最小,當圓心與點P的距離最小時,即距離為圓心到直線l的距離最小時,切線長PA,PB最小。切線長為4,
∴,
∴圓心到直線l的距離為.
∵直線(
),
∴,解得
,由
所求直線的斜率為
故選D.
【題型】單選題
【結束】
19
【題目】拋物線的焦點為
,準線為
,經過
且斜率為
的直線與拋物線在
軸上方的部分相交于點
,
,垂足為
,則
的面積是 ( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率
,右焦點
,過點
的直線交橢圓
于
兩點.
(1)求橢圓的方程;
(2)若點關于
軸的對稱點為
,求證:
三點共線;
(3) 當面積最大時,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com