【題目】設等差數列{an}的前n項和為Sn,且a3+2S6=77,a10﹣a5=10.
(1)求數列{an}的通項公式;
(2)數列{bn}滿足:b1=1,bn﹣bn﹣1=an﹣n+1(n≥2),求數列{}的前n項和Tn.
科目:高中數學 來源: 題型:
【題目】已知拋物線C:經過點
,其焦點為F,M為拋物線上除了原點外的任一點,過M的直線l與x軸、y軸分別交于A,B兩點.
Ⅰ
求拋物線C的方程以及焦點坐標;
Ⅱ
若
與
的面積相等,證明直線l與拋物線C相切.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高三年級有1000人,某次考試不同成績段的人數,且所有得分都是整數.
(1)求全班平均成績;
(2)計算得分超過141的人數;(精確到整數)
(3)甲同學每次考試進入年級前100名的概率是,若本學期有4次考試,
表示進入前100名的次數,寫出
的分布列,并求期望與方差.
參考數據:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數.
(1)若在
處的切線與直線
平行,求
的值;
(2)討論函數的單調區間;
(3)若函數的圖象與
軸交于A,B兩點,線段AB中點的橫坐標為
,證明
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某汽車零件加工廠為迎接國慶大促銷活動預估國慶七天銷售量,該廠工作人員根據以往該廠的銷售情況,繪制了該廠日銷售量的頻率分布直方圖,如圖所示,將日銷售量落入各組的頻率視為概率,并假設每天的銷售量相互獨立.
(1)根據頻率分布直方圖估計該廠的日平均銷售量;(每組以中點值為代表)
(2)求未來天內,連續
天日銷售量不低于
噸,另一天日銷售量低于
噸的概率;
(3)用表示未來
天內日銷售量不低于
噸的天數,求隨機變量
的分布列、數學期望與方差.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中.直線1的參數方程為(t為參數).在以坐標原點為極點,x軸的非負半軸為極軸的極坐標系中.曲線C的極坐標方程為ρ=2cosθ.
(1)若曲線C關于直線l對稱,求a的值;
(2)若A、B為曲線C上兩點.且∠AOB,求|OA|+|OB|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題正確的是________(寫出所有正確命題的編號)
①命題“若,則
且
”的否定是“若
,則
且
”
②已知函數的圖象關于直線
對稱,函數
為奇函數,則4是
一個周期.
③平面,
,過
內一點
作
的垂線
,則
.
④在中角
所對的邊分別為
,若
,則
成等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex﹣ax
(1)討論函數f(x)的單調性;
(2)若存在x1<x2,且滿足f(x1)=(x2).證明;
(3)證明:(n∈N).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學生為了測試煤氣灶燒水如何節省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數與燒開一壺水所用時間
的一組數據,且作了一定的數據處理(如下表),得到了散點圖(如下圖).
表中,
.
(1)根據散點圖判斷,與
哪一個更適宜作燒水時間
關于開關旋鈕旋轉的弧度數
的回歸方程類型?(不必說明理由)
(2)根據判斷結果和表中數據,建立關于
的回歸方程;
(3)若單位時間內煤氣輸出量與旋轉的弧度數
成正比,那么,利用第(2)問求得的回歸方程知
為多少時,燒開一壺水最省煤氣?
附:對于一組數據,其回歸直線
的斜率和截距的最小二乘法估計值分別為
,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com