【題目】下列命題正確的是________(寫出所有正確命題的編號)
①命題“若,則
且
”的否定是“若
,則
且
”
②已知函數的圖象關于直線
對稱,函數
為奇函數,則4是
一個周期.
③平面,
,過
內一點
作
的垂線
,則
.
④在中角
所對的邊分別為
,若
,則
成等差數列.
科目:高中數學 來源: 題型:
【題目】公元前世紀的畢達哥拉斯是最早研究“完全數”的人.完全數是一種特殊的自然數,它所有的真因子(即除了自身以外的約數)的和恰好等于它本身.若從集合
中隨機抽取兩個數,則這兩個數中有完全數的概率是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4—4:坐標系與參數方程
在直角坐標系xOy中,設傾斜角為α的直線l:(t為參數)與曲線C:
(θ為參數)相交于不同的兩點A,B.
(Ⅰ)若α=,求線段AB中點M的坐標;
(Ⅱ)若|PA|·|PB|=|OP|,其中P(2,
),求直線l的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等差數列{an}的前n項和為Sn,且a3+2S6=77,a10﹣a5=10.
(1)求數列{an}的通項公式;
(2)數列{bn}滿足:b1=1,bn﹣bn﹣1=an﹣n+1(n≥2),求數列{}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在南北方向有一條公路,一半徑為100的圓形廣場(圓心為
)與此公路所在直線
相切于點
,點
為北半圓。ɑ
)上的一點,過點
作直線
的垂線,垂足為
,計劃在
內(圖中陰影部分)進行綠化,設
的面積為
(單位:
),
(1)設,將
表示為
的函數;
(2)確定點的位置,使綠化面積最大,并求出最大面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是等差數列,{bn}是各項均為正數的等比數列,且b1=a1=1,b3=a4,b1+b2+b3=a3+a4.
(1)求數列{an},{bn}的通項公式;
(2)設cn=anbn,求數列{cn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數方程為(t為參數),若以O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=cosθ﹣sinθ.
(1)求直線l被曲線C所截得的弦長;
(2)若M(x,y)是曲線C上的動點,求x+y的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓(a>0,b>0)的左右焦點分別為F1,F2,與y軸正半軸交于點B,若△BF1F2為等腰直角三角形,且直線BF1被圓x2+y2=b2所截得的弦長為2,
(1)求橢圓的方程;
(2)直線l:y=kx+m與橢圓交于點A,C,線段AC的中點為M,射線MO與橢圓交于點P,點O為△PAC的重心,求證:△PAC的面積S為定值;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程是
.
(1)求曲線的直角坐標方程和直線
的普通方程;
(2)設點,
為曲線
上的動點,求
的面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com