已知數列是公差不為零的等差數列,
,且
是
和
的等比中項.
(1)求數列的通項公式;
(2)設數列的前
項和為
,
,試問當
為何值時,
最大?并求出
的最大值.
科目:高中數學 來源: 題型:解答題
設等差數列{an}的前n項和為Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范圍.
(2)求{an}前n項和Sn最大時n的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列{an}滿足a1>0,an+1=2-|an|,n∈N*.
(1)若a1,a2,a3成等比數列,求a1的值;
(2)是否存在a1,使數列{an}為等差數列?若存在,求出所有這樣的a1;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知各項均不相等的等差數列{an}的前5項和為S5=35,且a1+1,a3+1,a7+1成等比數列.
(1)求數列{an}的通項公式;
(2)設Tn為數列的前n項和,問是否存在常數m,使Tn=m
,若存在,求m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列滿足
,
,
,
是數列
的前
項和.
(1)若數列為等差數列.
①求數列的通項;
②若數列滿足
,數列
滿足
,試比較數列
前
項和
與
前
項和
的大小;
(2)若對任意,
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設數列{an}滿足an+1=2an+n2-4n+1.
(1)若a1=3,求證:存在(a,b,c為常數),使數列{an+f(n)}是等比數列,并求出數列{an}的通項公式;
(2)若an是一個等差數列{bn}的前n項和,求首項a1的值與數列{bn}的通項公式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com