【題目】已知函數,
.
(Ⅰ)當時,求不等式
的解集;
(Ⅱ)若,
恒成立,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】海州市六一兒童節期間在婦女兒童活動中心舉行小學生“海州杯”圍棋比賽,規則如下:甲、乙兩名選手比賽時,每局勝者得1分,負者得0分,比賽進行到有一人比對方多2分或賽滿6局時比賽結束.設某校選手甲與另一選手乙比賽時,甲每局獲勝的概率皆為,且各局比賽勝負互不影響,已知第二局比賽結束時比賽停止的概率為
.
(1)求的值;
(2)設表示比賽停止時已比賽的局數,求隨機變量
的分布列和數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在剛剛結束的五市聯考中,某校對甲、乙兩個文科班的數學成績進行分析,規定:大于或等于120分為優秀,120分以下為非優秀,成績統計后,得到如下的列聯表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優秀的概率為
.
班級 | 優秀 | 非優秀 | 合計 |
甲班 | 18 | ||
乙班 | 43 | ||
合計 | 110 |
(1)請完成上面的列聯表;
(2)請問:是否有的把握認為“數學成績與所在的班級有關系”?
(3)用分層抽樣的方法從甲、乙兩個文科班的數學成績優秀的學生中抽取5名學生進行調研,然后再從這5名學生中隨機抽取2名學生進行談話,求抽到的2名學生中至少有1名乙班學生的概率.
參考公式: (其中
)
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校的一個社會實踐調查小組,在對該校學生的良好“用眼習慣”的調查中,隨機發放了120分問卷.對收回的100份有效問卷進行統計,得到如下列聯表:
做不到科學用眼 | 能做到科學用眼 | 合計 | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
合計 | 75 | 25 | 100 |
(1)現按女生是否能做到科學用眼進行分層,從45份女生問卷中抽取了6份問卷,從這6份問卷中再隨機抽取3份,并記其中能做到科學用眼的問卷的份數,試求隨機變量
的分布列和數學期望;
(2)若在犯錯誤的概率不超過的前提下認為良好“用眼習慣”與性別有關,那么根據臨界值表,最精確的
的值應為多少?請說明理由.
附:獨立性檢驗統計量,其中
.
獨立性檢驗臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.840 | 5.024 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高二年級的一個研究性學習小組在網上查知,某珍貴植物種子在一定條件下發芽成功的概率為,該研究性學習小組又分成兩個小組進行驗證性實驗.
(1)第1組做了5次這種植物種子的發芽實驗(每次均種下一粒種子),求他們的實驗至少有3次成功的概率;
(2)第二小組做了若干次發芽試驗(每次均種下一粒種子),如果在一次實驗中種子發芽成功就停止實驗,否則將繼續進行下次實驗,直到種子發芽成功為止,但發芽實驗的次數最多不超過5次,求第二小組所做種子發芽實驗的次數的概率分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某校歌詠比賽中,甲班、乙班、丙班、丁班均可從、
、
、
四首不同曲目中任選一首.
(1)求甲、乙兩班選擇不同曲目的概率;
(2)設這四個班級總共選取了首曲目,求
的分布列及數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2015年12月,京津冀等地數城市指數“爆表”,北方此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關,現采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與
的數據如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
車流量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點圖知與
具有線性相關關系,求
關于
的線性回歸方程;
的濃度;
(ii)規定:當一天內的濃度平均值在
內,空氣質量等級為優;當一天內
的濃度平均值在
內,空氣質量等級為良,為使該市某日空氣質量為優或者為良,則應控制當天車流量在多少萬輛以內?(結果以萬輛為單位,保留整數)
參考公式:回歸直線的方程是,其中
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com