精英家教網 > 高中數學 > 題目詳情

【題目】已知關于的方程的三個實根分別為一個橢圓,一個拋物線,一個雙曲線的離心率,則的取值范圍(

A. B.

C. D.

【答案】C

【解析】令f(x)=x3+ax2+bx+c

∵拋物線的離心率為1,∴1是方程f(x)=x3+ax2+bx+c=0的一個實根∴a+b+c=﹣1

∴c=﹣1﹣a﹣b代入f(x)=x3+ax2+bx+c,

可得f(x)=x3+ax2+bx﹣1﹣a﹣b=(x﹣1)(x2+x+1)+a(x+1)(x﹣1)+b(x﹣1)=(x﹣1)

設g(x)=x2+(a+1)x+1+a+b,則g(x)=0的兩根滿足0<x1<1,x2>1

∴g(0)=1+a+b>0,g(1)=3+2a+b<0

作出可行域,如圖所示

的幾何意義是區域內的點與原點連線的斜率,∴故答案為:C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在等差數列{an}中,a2=5,a6=21,記數列 的前n項和為Sn , 若 對n∈N+恒成立,則正整數m的最小值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著我國經濟的發展,居民的儲蓄存款逐年增長.設某地區城鄉居民人民幣儲蓄存款(年底余額)如下表:

年份

2010

2011

2012

2013

2014

時間代號t

1

2

3

4

5

儲蓄存款y(千億元)

5

6

7

8

10


(1)求y關于t的回歸方程
(2)用所求回歸方程預測該地區2015年(t=6)的人民幣儲蓄存款.
附:回歸方程

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)的解析式滿足
(1)求函數f(x)的解析式;
(2)當a=1時,試判斷函數f(x)在區間(0,+∞)上的單調性,并加以證明;
(3)當a=1時,記函數 ,求函數g(x)在區間 上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=x3﹣12x+4,x∈R.
(1)求f(x)的單調區間和極值;
(2)若關于x的方程f(x)=a有3個不同實根,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若函數的圖像在處的切線垂直于直線,求實數的值及直線的方程;

(2)求函數的單調區間;

(3)若,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓經過點, 的四個頂點構成的四邊形面積為.

(1)求橢圓的方程;

(2)在橢圓上是否存在相異兩點,使其滿足:①直線與直線的斜率互為相反數;②線段的中點在軸上,若存在,求出的平分線與橢圓相交所得弦的弦長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=ax2+bx,g(x)=2x﹣1.
(1)當a=1時,若函數f(x)的圖象恒在函數g(x)的圖象上方,試求實數b 的取值范圍;
(2)若y=f(x)對任意的x∈R均有f(x﹣2)=f(﹣x)成立,且f(x)的圖象經過 點A(1, ).
①求函數y=f(x)的解析式;
②若對任意x<﹣3,都有2k <g(x)成立,試求實數k的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在對人們休閑方式的一次調查中,共調查120人,其中女性70人、男性50人,女性中有40人主要的休閑方式是看電視,另外30人主要的休閑方式是運動;男性中有20人主要的休閑方式是看電視,另外30人主要的休閑方式是運動.
(1)根據以上數據建立一個2×2的列聯表;
(2)在犯錯誤的概率不超過0.10的前提下,認為休閑方式與性別是否有關?
參考數據:獨立性檢驗臨界值表

p(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2= ,n=a+b+c+d.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视