數列,
滿足
.
(1)若是等差數列,求證:
為等差數列;
(2)若,求數列
的前
項和
.
科目:高中數學 來源: 題型:解答題
設不等式組所表示的平面區域為
,記
內的格點(格點即橫坐標和縱坐標均為整數的點)個數為
(1)求的值及
的表達式;
(2)設為數列
的前
項的和,其中
,問是否存在正整數
,使
成立?若存在,求出正整數
;若不存在,說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
數列{an}(n∈N﹡)中,a1=0,當3an<n2時,an+1=n2,當3an>n2時,an+1=3an.求a2,a3,a4,a5,猜測數列的通項an并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設數列{an} 的前n項和為Sn,滿足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差數列.
(1)求a1,a2,a3的值;
(2)求證:數列{an+2n}是等比數列;
(3)證明:對一切正整數n,有+
+…+
<
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知曲線,過
上一點
作一斜率為
的直線交曲線
于另一點
(
且
,點列
的橫坐標構成數列
,其中
.
(1)求與
的關系式;
(2)令,求證:數列
是等比數列;
(3)若(
為非零整數,
),試確定
的值,使得對任意
,都有
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
2013年我國汽車擁有量已超過2億(目前只有中國和美國超過2億),為了控制汽車尾氣對環境的污染,國家鼓勵和補貼購買小排量汽車的消費者,同時在部分地區采取對新車限量上號.某市采取對新車限量上號政策,已知2013年年初汽車擁有量為(
=100萬輛),第
年(2013年為第1年,2014年為第2年,依次類推)年初的擁有量記為
,該年的增長量
和
與
的乘積成正比,比例系數為
其中
=200萬.
(1)證明:;
(2)用表示
;并說明該市汽車總擁有量是否能控制在200萬輛內.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列中,
,前
和
(Ⅰ)求證:數列是等差數列; (Ⅱ)求數列
的通項公式;
(Ⅲ)設數列的前
項和為
,是否存在實數
,使得
對一切正整數
都成立?若存在,求
的最小值,若不存在,試說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com