【題目】某公司生產某種產品的速度為千克/小時,每小時可獲得的利潤是
元,其中
.
(1)要使生產該產品每小時獲得的利潤為60元,求每小時生產多少千克?
(2)要使生產400千克該產品獲得的利潤最大,問:此公司每小時應生產多少千克產品?并求出最大利潤.
科目:高中數學 來源: 題型:
【題目】已知拋物線:
,不過坐標原點
的直線
交于
,
兩點.
(Ⅰ)若,證明:直線
過定點;
(Ⅱ)設過且與
相切的直線為
,過
且與
相切的直線為
.當
與
交于點
時,求
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數在
內只取到一個最大值和一個最小值,且當
時,
;當
時,
.
(1)求函數的解析式.
(2)求函數的單調遞增區間.
(3)是否存在實數,滿足不等式
?若存在,求出
的范圍(或值);若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動.學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調查.各組人數統計如下:
小組 | 甲 | 乙 | 丙 | 丁 |
人數 | 12 | 9 | 6 | 9 |
(1)從參加問卷調查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;
(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數,求隨機變量
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓.
(1)若直線過點
且被圓
截得的弦長為2,求直線
的方程;
(2)從圓外一點
向圓
引一條切線,切點為
為坐標原點,滿足
,求點
的軌跡方程及
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com