【題目】已知函數f(x)=lnx﹣ax,(a∈R)
(1)若函數f(x)在點區間[e,+∞]處上為增函數,求a的取值范圍;
(2)若函數f(x)的圖象在點x=e(e為自然對數的底數)處的切線斜率為3,且k∈Z時,不等式 k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值;
(3)n>m≥4時,證明:(mnn)m>(nmm)n .
【答案】
(1)解:∵f(x)=ax+xlnx,
又函數f(x)在區間[e,+∞)上為增函數,
∴當x≥e時,f'(x)=a+1+lnx≥0恒成立,
∴a≥(﹣1﹣lnx)max=﹣1﹣lne=﹣2,
即a的取值范圍為[﹣2,+∞);
(2)解:因為f(x)=ax+xlnx(a∈R),
所以f'(x)=a+lnx+1f(x)在點x=e(e為自然對數的底數)處的切線斜率為3,
f'(e)=3,即a+lne+1=3,∴a=1
當x>1時,x﹣1>0,故不等式 ,
即 對任意x>1恒成立,
令 則
.
令h(x)=x﹣lnx﹣2(x>1),
則 在(1,+∞)上單增,
∵h(3)=1﹣ln3<0,h(4)=2﹣ln4>0,
∴存在x0∈(3,4)使h(x0)=0,
即當1<x<x0時,h(x)<0,即g'(x)<0,
當x>x0時,h(x)>0,即g'(x)>0,
∴g(x)在(1,x0)上單減,在(x0,+∞)上單增.
令h(x0)=x0﹣lnx0﹣2=0,即lnx0=x0﹣2,
∴k<g(x)min=x0且k∈Z,
即kmax=3
(3)證明:由(2)知, 是[4,+∞)上的增函數,
所以當n>m≥4,
整理,得mnlnn+mlnm>mnlnm+nlnn+n﹣m
因為n>m,mnlnn+mlnm>mnlnm+nlnn…
即lnnmn+lnmm>lnmmn+lnnn,
ln(nmnmm)>ln(mmnnn),
nmnmm>mmnnn,
∴(mnn)m>(nmm)n
【解析】(1)求出函數的導數,得到a≥(﹣1﹣lnx)max=﹣1﹣lne=﹣2,從而求出a的范圍即可;(2)求出函數的導數,求出a的值,得到 對任意x>1恒成立,令
,根據函數的單調性求出g(x)的最小值,從而求出k的最大值;(3)當n>m≥4,得到
,整理即可.
【考點精析】解答此題的關鍵在于理解利用導數研究函數的單調性的相關知識,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減,以及對函數的最大(小)值與導數的理解,了解求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數學 來源: 題型:
【題目】某公司的兩個部門招聘工作人員,應聘者從 T1、T2兩組試題中選擇一組參加測試,成績合格者可簽約.甲、乙、丙、丁四人參加應聘考試,其中甲、乙兩人選擇使用試題 T1 , 且表示只要成績合格就簽約;丙、丁兩人選擇使用試題 T2 , 并約定:兩人成績都合格就一同簽約,否則兩人都不簽約.已知甲、乙考試合格的概率都是 ,丙、丁考試合格的概率都是
,且考試是否合格互不影響.
(1)求丙、丁未簽約的概率;
(2)記簽約人數為 X,求 X的分布列和數學期望EX.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:函數f(x)=loga(2+x)﹣loga(2﹣x)(a>0且a≠1)
(Ⅰ)求f(x)定義域;
(Ⅱ)判斷f(x)的奇偶性,并說明理由;
(Ⅲ)求使f(x)>0的x的解集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣ax,(a∈R)
(1)若函數f(x)在點(1,f(1))處切線方程為y=3x+b,求a,b的值;
(2)當a>0時,求函數f(x)在[1,2]上的最小值;
(3)設g(x)=x2﹣2x+2,若對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下是某地搜集到的新房屋的銷售價格和房屋的面積
的數據:
房屋面積( | 115 | 110 | 80 | 135 | 105 |
銷售價格(萬元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)畫出數據對應的散點圖;
(2)求線性回歸方程,并在散點圖中加上回歸直線;
(3)據(2)的結果估計當房屋面積為150時的銷售價格.附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,現從高一學生中抽取人做調查,得到如下
列聯表:
已知在這人中隨機抽取一人抽到喜歡游泳的學生的概率為
,
(Ⅰ)請將上述列聯表補充完整,并判斷是否有%的把握認為喜歡游泳與性別有關?并說明你的理由;
(Ⅱ)針對問卷調查的名學生,學校決定從喜歡游泳的人中按分層抽樣的方法隨機抽取
人成立游泳科普知識宣傳組,并在這
人中任選兩人作為宣傳組的組長,求這兩人中至少有一名女生的概率,參考公式:
,其中
.參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓錐曲線C的極坐標方程為ρ2= ,F1是圓錐曲線C的左焦點.直線l:
(t為參數).
(1)求圓錐曲線C的直角坐標方程和直線l的直角坐標方程;
(2)若直線l與圓錐曲線C交于M,N兩點,求|F1M|+|F1N|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市規定,高中學生三年在校期間參加不少于小時的社區服務才合格.教育部門在全市隨機抽取200位學生參加社區服務的數據,按時間段
,
,
,
,
(單位:小時)進行統計,其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200位學生中,參加社區服務時間不少于90小時的學生人數,并估計
從全市高中學生中任意選取一人,其參加社區服務時間不少于90小時的概率;
(Ⅱ)從全市高中學生(人數很多)中任意選取3位學生,記為3位學生中參加社區服務時間不少于90小時的人數.試求隨機變量
的分布列和數學期望
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com