【題目】某市規定,高中學生三年在校期間參加不少于小時的社區服務才合格.教育部門在全市隨機抽取200位學生參加社區服務的數據,按時間段
,
,
,
,
(單位:小時)進行統計,其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200位學生中,參加社區服務時間不少于90小時的學生人數,并估計
從全市高中學生中任意選取一人,其參加社區服務時間不少于90小時的概率;
(Ⅱ)從全市高中學生(人數很多)中任意選取3位學生,記為3位學生中參加社區服務時間不少于90小時的人數.試求隨機變量
的分布列和數學期望
.
【答案】(Ⅰ)(Ⅱ)
0 | 1 | 2 | 3 | |
【解析】
試題分析:(Ⅰ)根據頻率分布直方圖中小長方形面積為頻率,而頻數為總數與頻率之積. 因此參加社區服務時間在時間段小時的學生人數為
(人),參加社區服務時間在時間段
小時的學生人數為
(人).所以抽取的200位學生中,參加社區服務時間不少于90小時的學生人數為
人.概率估計為
(Ⅱ)隨機變量
的可能取值為
.由(Ⅰ)可知,概率為
因為
~
,所以
.隨機變量
的分布列為
0 | 1 | 2 | 3 | |
解:(Ⅰ)根據題意,
參加社區服務時間在時間段小時的學生人數為
(人),
參加社區服務時間在時間段小時的學生人數為
(人).
所以抽取的200位學生中,參加社區服務時間不少于90小時的學生人數為人.
所以從全市高中學生中任意選取一人,其參加社區服務時間不少于90小時的
概率估計為 5分
(Ⅱ)由(Ⅰ)可知,從全市高中生中任意選取1人,其參加社區服務時間不少于90小時的概率為
由已知得,隨機變量的可能取值為
.
所以;
;
;
.
隨機變量的分布列為
0 | 1 | 2 | 3 | |
因為 ~
,所以
. 13分
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣ax,(a∈R)
(1)若函數f(x)在點區間[e,+∞]處上為增函數,求a的取值范圍;
(2)若函數f(x)的圖象在點x=e(e為自然對數的底數)處的切線斜率為3,且k∈Z時,不等式 k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值;
(3)n>m≥4時,證明:(mnn)m>(nmm)n .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題p:實數x滿足 <0,其中a>0,命題q:實數x滿足
.
(1)若a=1,且p∧q為真,求實數x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究小組為了研究某品牌智能手機在正常使用情況下的電池供電時間,分別從該品牌手機的甲、乙兩種型號中各選取部進行測試,其結果如下:
甲種手機供電時間(小時) | ||||||
乙種手機供電時間(小時) |
(1)求甲、乙兩種手機供電時間的平均值與方差,并判斷哪種手機電池質量好;
(2)為了進一步研究乙種手機的電池性能,從上述部乙種手機中隨機抽取
部,記所抽
部手機供電時間不小于
小時的個數為
,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點
,動點
在橢圓上,且使得
的點
恰有兩個,動點
到焦點
的距離的最大值為
.
(1)求橢圓的方程;
(2)如圖,以橢圓的長軸為直徑作圓
,過直線
上的動點
作圓
的兩條切線,設切點分別為
,若直線
與橢圓
交于不同的兩點
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= 在點(1,f(1))處的切線與x軸平行.
(1)求實數a的值及f(x)的極值;
(2)若對任意x1 , x2∈[e2 , +∞),有| |>
,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點M、N分別是面對角線A1B與B1D1的中點,設 =
,
=
,
=
.
(1)以{ ,
,
}為基底,表示向量
;
(2)求證:MN∥平面BCC1B1;
(3)求直線MN與平面A1BD所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M、N分別是棱C1D1、C1C的中點.以下四個結論:
①直線AM與直線CC1相交;
②直線AM與直線BN平行;
③直線AM與直線DD1異面;
④直線BN與直線MB1異面.
其中正確結論的序號為 .
(注:把你認為正確的結論序號都填上)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com