【題目】下列各組函數是同一函數的是( )
① 與
;
②f(x)=x與 ;
③f(x)=x0與 ;
④f(x)=x2﹣2x﹣1與g(t)=t2﹣2t﹣1.
A.①②
B.①③
C.③④
D.①④
科目:高中數學 來源: 題型:
【題目】設OABC是四面體,G1是△ABC的重心,G是OG1上一點,且OG=3GG1 , 若 =x
+y
+z
,則(x,y,z)為( )
A.( ,
,
)
B.( ,
,
)
C.( ,
,
)
D.( ,
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}.
(1)若A∩B={2},求實數a的值;
(2)若A∪B=A,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的偶函數,且當x≤0時,f(x)=x2+2x.
(1)現已畫出函數f(x)在y軸左側的圖象,如圖所示,請補出完整函數f(x)的圖象,并根據圖象寫出函數f(x)的增區間;
(2)寫出函數f(x)的解析式和值域;
(3)若方程f(x)﹣m=0有四個解,求m的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F1 , F2是橢圓 (a>b>0)的兩個焦點,O為坐標原點,點P(﹣1,
)在橢圓上,且
=0,⊙O是以F1F2為直徑的圓,直線l:y=kx+m與⊙O相切,并且與橢圓交于不同的兩點A,B
(1)求橢圓的標準方程;
(2)當
=λ,且滿足
≤λ≤
時,求弦長|AB|的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】請閱讀下列材料:若兩個正實數a1 , a2滿足a12+a22=1,那么a1+a2 .證明:構造函數f(x)=(x﹣a1)2+(x﹣a2)2=2x2﹣2(a1+a2)x+1,因為對一切實數x,恒有f(x)≥0,所以△≤0,從而得4(a1+a2)2﹣8≤0,所以a1+a2
.根據上述證明方法,若n個正實數滿足a12+a22+…+an2=1時,你能得到的結論為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥側面A1ABB1 , 且AA1=AB=2
(1)求證:AB⊥BC;
(2)若AC=2 ,求銳二面角A﹣A1C﹣B的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面使用類比推理正確的是( )
A.直線a∥b,b∥c,則a∥c,類推出:向量 ,
,則
B.同一平面內,直線a,b,c,若a⊥c,b⊥c,則a∥b.類推出:空間中,直線a,b,c,若a⊥c,b⊥c,則a∥b
C.實數a,b,若方程x2+ax+b=0有實數根,則a2≥4b.類推出:復數a,b,若方程x2+ax+b=0有實數根,則a2≥4b
D.以點(0,0)為圓心,r為半徑的圓的方程為x2+y2=r2 . 類推出:以點(0,0,0)為球心,r為半徑的球的方程為x2+y2+z2=r2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com