【題目】已知拋物線,過
的直線與拋物線
相交于
兩點.
(1)若點是點
關于坐標原點
的對稱點,求
面積的最小值;
(2)是否存在垂直于軸的直線
,使得
被以
為直徑的圓截得的弦長恒為定值?若存在,求出
的方程和定值;若不存在,說明理由.
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,過橢圓右焦點
的直線
與橢圓交于
,
兩點,當直線
與
軸垂直時,
.
(1)求橢圓的標準方程;
(2)當直線與
軸不垂直時,在
軸上是否存在一點
(異于點
),使
軸上任意點到直線
,
的距離均相等?若存在,求
點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P在拋物線上,且點P的橫坐標為2,以P為圓心,
為半徑的圓(O為原點),與拋物線C的準線交于M,N兩點,且
.
(1)求拋物線C的方程;
(2)若拋物線的準線與y軸的交點為H.過拋物線焦點F的直線l與拋物線C交于A,B,且,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我們把有相同數字相鄰的數叫“兄弟數”,現從由一個1,一個2,兩個3,兩個4這六個數字組成的所有不同的六位數中隨機抽取一個,則抽到“兄弟數”的概率為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦距為2,過右焦點和短軸一個端點的直線的斜率為
,
為坐標原點.
(1)求橢圓的方程;
(2)設點,直線
與橢圓C交于兩個不同點P,Q,直線AP與x軸交于點M,直線AQ與x軸交于點N,若|OM|·|ON|=2,求證:直線l經過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三國時代吳國數學家趙爽所注《周髀算經》中給出了勾股定理的絕妙證明,左上面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實以及黃實,并且利用勾
股
(股
勾)
朱實
黃實
弦實,化簡得勾
股
弦
,設勾股中勾股比為
,若向弦圖內隨機拋擲
顆圖釘,則落在黃色圖形內的圖釘數大約為_______________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】班主任為了對本班學生的考試成績進行分析,決定從本班24名女同學,18名男同學中隨機抽取一個容量為7的樣本進行分析.
(1)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結果)
(2)如果隨機抽取的7名同學的數學,物理成績(單位:分)對應如下表:
學生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
數學成績 | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
物理成績 | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
①若規定85分以上(包括85分)為優秀,從這7名同學中抽取3名同學,記3名同學中數學和物理成績均為優秀的人數為,求
的分布列和數學期望;
②根據上表數據,求物理成績關于數學成績
的線性回歸方程(系數精確到0.01);若班上某位同學的數學成績為96分,預測該同學的物理成績為多少分?
附:線性回歸方程,
其中,
.
76 | 83 | 812 | 526 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com