精英家教網 > 高中數學 > 題目詳情

【題目】某市在開展創建全國文明城市活動中,工作有序扎實,成效顯著,尤其是城市環境衛生大為改觀,深得市民好評.“創文過程中,某網站推出了關于環境治理和保護問題情況的問卷調查,現從參與問卷調查的人群中隨機選出200人,并將這200人按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

1)求出a的值;

2)若已從年齡較小的第1,2組中用分層抽樣的方法抽取5人,現要再從這5人中隨機抽取3人進行問卷調查,設第2組抽到人,求隨機變量的分布列及數學期望.

【答案】(1)(2)詳見解析

【解析】

1)由頻率分布直方圖的性質,能求出的值.

2)根據分層抽樣的規則計算出各組人數,則隨機變量的所有可能取值為1,2,3,分別計算出概率,列出分布列即可求出期望.

解:(1)由,解得.

2)第12組的人數分別為20人,30人,從第1,2組中用分層抽樣的方法抽取5人,則第1,2組抽取的人數依次為2人,3.

隨機變量的所有可能取值為1,23.其中

,,,

所以隨機變量的分布列為:

l

2

3

P

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知等差數列的首項為p,公差為,對于不同的自然數,直線軸和指數函數的圖象分別交于點(如圖所示),記的坐標為,直角梯形、的面積分別為,一般地記直角梯形的面積為.

1)求證:數列是公比絕對值小于1的等比數列;

2)設的公差,是否存在這樣的正整數,構成以,為邊長的三角形?并請說明理由;

3)設的公差為已知常數,是否存在這樣的實數p使得(1)中無窮等比數列各項的和?并請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區甲、乙、丙三所單位進行招聘,其中甲單位招聘2名,乙單位招聘2名,丙單位招聘1名,并且甲單位要至少招聘一名男生,現有3男3女參加三所單位的招聘,則不同的錄取方案種數為( )

A.36B.72C.108D.144

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設全集,關于的不等式)的解集為.

1)求集合;

2)設集合,若 中有且只有三個元素,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】裴波那契數列(Fibonacci sequence )又稱黃金分割數列,因為數學家列昂納多·裴波那契以兔子繁殖為例子引入,故又稱為兔子數列,在數學上裴波那契數列被以下遞推方法定義:數列滿足:,,現從該數列的前40項中隨機抽取一項,則能被3整除的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中國有十二生肖,又叫十二屬相,每一個人的出生年份對應了十二種動物(鼠、牛、虎、兔、龍、蛇、馬、羊、猴、雞、狗、豬)的一種,現有十二生肖的吉物各一個,甲、乙、丙三位同學依次選一個作為禮物,甲同學喜歡牛和馬,乙同學喜歡牛、兔、狗和羊,丙同學哪個吉祥物都喜歡,如果讓三位同學選取的禮物都滿意,那么不同的選法有(  )

A. 50B. 60C. 70D. 90

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在發生某公共衛生事件期間,有專業機構認為該事件在一段時間內沒有發生大規模群體感染的標志是“連續10日,每天新增疑似病例不超過7人”.過去10日,甲、乙、丙、丁四地新增疑似病例數據信息如下:

甲地:總體平均數為3,中位數為4;

乙地:總體平均數為1,總體方差大于0;

丙地:總體平均數為2,總體方差為3;

丁地:中位數為2,眾數為3;

則甲、乙、兩、丁四地中,一定沒有發生大規模群體感染的是(

A.甲地B.乙地C.丙地D.丁地

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列{an}滿足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1對任何的正整數n都成立,則的值為(  )

A. 5032 B. 5044 C. 5048 D. 5050

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是某地區2000年至2016年環境基礎設施投資額(單位:億元)的折線圖.則下列結論中表述不正確的是( )

A. 從2000年至2016年,該地區環境基礎設施投資額逐年增加;

B. 2011年該地區環境基礎設施的投資額比2000年至2004年的投資總額還多;

C. 2012年該地區基礎設施的投資額比2004年的投資額翻了兩番 ;

D. 為了預測該地區2019年的環境基礎設施投資額,根據2010年至2016年的數據(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據該模型預測該地區2019的環境基礎設施投資額為256.5億元.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视