【題目】已知等差數列的首項為p,公差為
,對于不同的自然數
,直線
與
軸和指數函數
的圖象分別交于點
與
(如圖所示),記
的坐標為
,直角梯形
、
的面積分別為
和
,一般地記直角梯形
的面積為
.
(1)求證:數列是公比絕對值小于1的等比數列;
(2)設的公差
,是否存在這樣的正整數
,構成以
,
,
為邊長的三角形?并請說明理由;
(3)設的公差
為已知常數,是否存在這樣的實數p使得(1)中無窮等比數列
各項的和
?并請說明理由.
【答案】(1)證明見解析(2)不存在,詳見解析(3)存在,證明見解析
【解析】
(1),直角梯形
的兩底長度
,
.高為
,利用梯形面積公式表示出
.利用等比數列定義進行證明即可;
(2),
,以
,
,
為邊長能構成一個三角形,則
考查不等式解的情況作解答;
(3)利用無窮等比數列求和公式,將化簡為
,則
,探討p的存在性.
解:(1),
,
,
對于任意自然數n,,
所以數列是等比數列且公比
,
因為,所以
;
(2),
,
對每個正整數,
,
若以,
,
為邊長能構成一個三角形,
則,即
,
即有,這是不可能的.
所以對每一個正整數,以
,
,
為邊長不能構成三角形;
(3)由(1)知,,
,
所以,
若,則
兩邊取對數,知只要取值為小于
的實數,
就有.
科目:高中數學 來源: 題型:
【題目】關于函數有下述四個結論:①若
,則
;②
的圖象關于點
對稱;③函數
在
上單調遞增;④
的圖象向右平移
個單位長度后所得圖象關于
軸對稱.其中所有正確結論的編號是( )
A.①②④B.①②C.③④D.②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,如果對任意
,恒有
成立,則稱
為
階縮放函數.
(1)已知函數為二階縮放函數,且當
時,
,求
的值;
(2)已知函數為二階縮放函數,且當
時,
,求證:函數
在
上無零點;
(3)已知函數為
階縮放函數,且當
時,
的取值范圍是
,求
在
上的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,曲線由兩個橢圓
:
和橢圓
:
組成,當
成等比數列時,稱曲線
為“貓眼曲線”.
(1)若貓眼曲線過點
,且
的公比為
,求貓眼曲線
的方程;
(2)對于題(1)中的求貓眼曲線,任作斜率為
且不過原點的直線與該曲線相交,交橢圓
所得弦的中點為M,交橢圓
所得弦的中點為N,求證:
為與
無關的定值;
(3)若斜率為的直線
為橢圓
的切線,且交橢圓
于點
,
為橢圓
上的任意一點(點
與點
不重合),求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,
底面
,
,
.D,E分別為
,
的中點,過
的平面與
,
相交于點M,N(M與P,B不重合,N與P,C不重合).
(1)求證:;
(2)求直線與平面
所成角的大小;
(3)若直線與直線
所成角的余弦值
時,求
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若是一個集合,
是一個以
的某些子集為元素的集合,且滿足:(1)
屬于
,
屬于
;(2)
中任意多個元素的并集屬于
;(3)
中任意多個元素的交集屬于
,則稱
是集合
上的一個拓補.已知集合
,對于下面給出的四個集合
:
①②
③④
其中是集合上的拓補的集合
的序號是______.(寫出所有的拓補的集合
的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市在開展創建“全國文明城市”活動中,工作有序扎實,成效顯著,尤其是城市環境衛生大為改觀,深得市民好評.“創文”過程中,某網站推出了關于環境治理和保護問題情況的問卷調查,現從參與問卷調查的人群中隨機選出200人,并將這200人按年齡分組:第1組,第2組
,第3組
,第4組
,第5組
,得到的頻率分布直方圖如圖所示.
(1)求出a的值;
(2)若已從年齡較小的第1,2組中用分層抽樣的方法抽取5人,現要再從這5人中隨機抽取3人進行問卷調查,設第2組抽到人,求隨機變量
的分布列及數學期望
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com