【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E,F分別是棱AB,BC的中點.證明A1 , C1 , F,E四點共面,并求直線CD1與平面A1C1FE所成角的正弦值.
【答案】解:以D為原點建立空間直角坐標系如圖所示:
則A1(2,0,1),C1(0,2,1),E(2,1,0),F(1,2,0).D1(0,0,1),
∴ =(﹣1,1,0),
=(﹣2,2,0).
∴ =2
.∵A1 , C1 , E,F四點不共線,
∴A1C1∥EF,
∴A1 , C1 , F,E四點共面. =(0,1,﹣1),
=(0,﹣2,1).
設平面A1C1FE的法向量為 =(x,y,z),則
.
∴ ,令z=1得
=(1,1,1).
∴cos< ,
>=
=
=﹣
.
∴直線CD1與平面A1C1FE所成角的正弦值為 .
【解析】以D為原點建立坐標系,求出 和
的坐標,利用向量共線定理得出四點共面,求出
和平面A1C1FE的法向量
,則直線CD1與平面A1C1FE所成角的正弦值為|cos<
,
>|.
【考點精析】本題主要考查了空間角的異面直線所成的角的相關知識點,需要掌握已知為兩異面直線,A,C與B,D分別是
上的任意兩點,
所成的角為
,則
才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】某企業生產一種機器的固定成本為0.5萬元,但每生產1百臺時,又需可變成本(即另增加投入)0.25萬元.市場對此商品的年需求量為5百臺,銷售的收入(單位:萬元)函數為:R(x)=5x﹣ x2(0≤x≤5),其中x是產品生產的數量(單位:百臺).
(1)將利潤表示為產量的函數;
(2)年產量是多少時,企業所得利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方形ABCD中邊長為1,P、Q分別為BC、CD上的點,△CPQ周長為2.
(1)求PQ的最小值;
(2)試探究求∠PAQ是否為定值,若是給出證明;不是說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過拋物線y2=2px(p>0)的焦點,斜率為2 的直線交拋物線于A(x1 , y1)和B(x2 , y2)(x1<x2)兩點,且|AB|=9,
(1)求該拋物線的方程;
(2)O為坐標原點,C為拋物線上一點,若 ,求λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側棱垂直于底面,底面是邊長為2的正三角形,側棱長為3,則BB1與平面AB1C1所成的角是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(﹣3,1),
=(1,﹣2),
=
+k
(k∈R).
(1)若 與向量2
﹣
垂直,求實數k的值;
(2)若向量 =(1,﹣1),且
與向量k
+
平行,求實數k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是某工廠對一批新產品長度(單位:mm)檢測結果的頻率分布直方圖.估計這批產品的中位數為( )
A.20
B.25
C.22.5
D.22.75
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)若cos =
,
π<x<
π,求
的值. 【答案】解:由
π<x<
π,得
π<x+
<2π,
又cos =
,∴sin
=﹣
;
∴cosx=cos =cos
cos
+sin
sin
=﹣
,
從而sinx=﹣ ,tanx=7;
故原式= ;
(1)已知函數f(x)=2 sinxcosx+2cos2x﹣1(x∈R),若f(x0)=
,x0∈[
,
],求cos2x0的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com