【題目】橢圓上頂點為,
為橢圓中心,
為橢圓的右焦點,且焦距為
,離心率為
.
(1)求橢圓的標準方程;
(2)直線交橢圓于
,
兩點,判斷是否存在直線
,使點
恰為
的垂心?若存在,求出直線
的方程;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】今年是新中國成立70周年.70年來,在中國共產黨的堅強領導下,全國各族人民團結心,迎難而上,開拓進取,奮力前行,創造了一個又一個人類發展史上的偉大奇跡,中華民族迎來了從站起來、富起來到強起來的偉大飛躍.某公司統計了第年(2013年是第一年)的經濟效益為
(千萬元),得到如下表格:
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
若由表中數據得到關于
的線性回歸方程是
,則可預測2020年經濟效益大約是( )
A.5.95千萬元B.5.25千萬元C.5.2千萬元D.5千萬元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分10分)選修4—4,坐標系與參數方程
已知曲線,直線
:
(
為參數).
(I)寫出曲線的參數方程,直線
的普通方程;
(II)過曲線上任意一點
作與
夾角為
的直線,交
于點
,
的最大值與最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=2ax2+2bx,若存在實數x0∈(0,t),使得對任意不為零的實數a,b均有f(x0)=a+b成立,則t的取值范圍是_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程選講
在平面直角坐標系中,以原點為極點,以軸非負半軸為極軸建立極坐標系, 已知曲線
的極坐標方程為
,直線
的極坐標方程為
.
(Ⅰ)寫出曲線和直線
的直角坐標方程;
(Ⅱ)設直線過點
與曲線
交于不同兩點
,
的中點為
,
與
的交點為
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】李明自主創業,在網上經營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網上支付成功后,李明會得到支付款的80%.
①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;
②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是橢圓
的左右頂點,
點為橢圓
上一點,點
關于
軸的對稱點為
,且
.
(1)若橢圓經過圓
的圓心,求橢圓
的方程;
(2)在(1)的條件下,若過點的直線與橢圓
相交于不同的
兩點,設
為橢圓
上一點,且滿足
(
為坐標原點),當
時,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】每個國家對退休年齡都有不一樣的規定,從2018年開始我國關于延遲退休的話題一直在網上熱議,為了了解市民對“延遲退休”的態度,現從某地市民中隨機選取100人進行調查,調查情況如下表:
年齡段(單位:歲) | ||||||
被調查的人數 | ||||||
贊成的人數 |
(1)從贊成“延遲退休”的人中任選1人,此人年齡在的概率為
,求出表格中
的值;
(2)在被調查的人中,年齡低于35歲的人可以認為“低齡人”,年齡不低于35歲的人可以認為“非低齡人”,試作出是否贊成“延遲退休”與“低齡與否”的列聯表,并指出有無
的把握認為是否贊成“延遲退休”與“低齡與否”有關,并說明理由.
附:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
①已知,則
;
②為空間四點,若
不構成空間的一個基底,那么
共面;
③已知,則
與任何向量都不構成空間的一個基底;
④若共線,則
所在直線或者平行或者重合.
正確的結論的個數為( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com