精英家教網 > 高中數學 > 題目詳情

已知:數列{a­n}的前n項和為Sn,滿足Sn=2an-2n(n∈N*) 
(1)求數列{a­n}的通項公式a­n
(2)若數列{bn}滿足bn=log2(an+2),而Tn為數列的前n項和,求Tn.

(1)(2)

解析試題分析:(1)當n∈N*時,Sn=2an-2n,①
則當n≥2, n∈N*時,Sn-1=2an-1-2(n-1). ②
①-②,得an=2an-2an-1-2,即an=2an-1+2,
∴an+2=2(an-1+2)  ∴
當n="1" 時,S1=2a1-2,則a1=2,當n=2時,a2=6,
∴ {a­n+2}是以a1+2為首項,以2為公比的等比數列.
∴an+2=4·2n-1,∴an=2n+1-2,………6分
(2)由
      ③
 ,④
③-④,得

………………………12分
考點:數列求通項,求前n項和
點評:由求通項及錯位相減求和是數列問題?贾R點

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知方程tan2x一tan x+1=0在x[0,n)( nN*)內所有根的和記為an
(1)寫出an的表達式;(不要求嚴格的證明)
(2)記Sn = a1 + a2 +…+ an求Sn
(3)設bn =(kn一5) ,若對任何nN* 都有anbn,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分13分)
設數列為單調遞增的等差數列,,且依次成等比數列.
(Ⅰ)求數列的通項公式;
(Ⅱ)若,求數列的前項和;
(Ⅲ)若,求數列的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(14分)已知數列中,,()
(1)求數列的通項公式;
(2)設,數列的前項和為,求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知數列為等差數列,且  
(1)求數列的通項公式;
(2)證明

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分14分)已知數列、滿足是首項為1,公差為1的等差數列.
(1)求數列的通項公式;(2)求數列的通項公式;(3)求數列的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(14分)已知數列的前n項和為,且滿足,
(1)設,數列為等比數列,求實數的值;
(2)設,求數列的通項公式;
(3)令,求數列的前n項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分16分)
已知數列項和.數列滿足,數列滿足。(1)求數列和數列的通項公式;(2)求數列的前項和;(3)若對一切正整數恒成立,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知數列是公差為2的等差數列,的前n項和,則=     

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视