【題目】已知a≥2,不等式logax+loga[(a+1)ak-1-x]≥2k-1的解集為A,其中a∈N*,k∈N.
(1)求A.
(2)設f(k)表示A中自然數個數,求和Sn=f(1)+f(2)+…+f(n).
(3)當a=2時,比較Sn與n2+n的大小,并證明你的結論.
【答案】(1);(2)
;(3)見解析
【解析】分析:(1)利用對數函數的單調性,轉化為不等式組,解之即可;
(2)由(1)明確f(k)表示A中自然數個數,累加求和即可;
(3)先用特例猜想二者大小,然后用數學歸納法證明.
詳解:(1)不等式同解于
,
由③,得x2-(a+1)ak-1x+a2k-1≤0.
∵a≥2,∴ak-1<ak.
∴ak-1≤x≤ak,且該式滿足①,②.
∴A={x|ak-1≤x≤ak}.
(2)由題意知f(k)=ak-ak-1+1,Sn=(a-a0+1)+(a2-a+1)+…+(an-an-1+1)=an+n-1.
(3)當a=2時,Sn=2n+n-1,Sn-(n2+n)=2n-n2-1.
當n=1時,S1=12+1;
當n=2時,S2<22+2;
當n=3時,S3<32+3;
當n=4時,S4<42+4;
當n=5時,S5>52+5.
猜想當n≥5(n∈N)時,Sn>n2+n.
下面用數學歸納法證明:
①當n=5時,已驗證.
②假設當n=k(k≥5)時,Sk>k2+k成立,即2k>k2+1成立,則當n=k+1時,Sk+1-[(k+1)2+(k+1)]=2k+1-(k+1)2-1=2×2k-k2-2k-2>2(k2+1)-k2-2k-2=k2-2k=k(k-2)>0,即Sk+1>[(k+1)2+(k+1)],∴當n=k+1時結論成立.
根據①②可知,對任何n≥5(n∈N*),都有Sn>n2+n成立.
綜上所述,當n=1時,Sn=n2+n;當n=2,3,4時,Sn<n2+n;當n≥5(n∈N*)時,Sn>n2+n.
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)請在所給的平面直角坐標系中畫出函數的圖象;
(2)根據函數的圖象回答下列問題:①求函數
的單調區間;
②求函數的值域;③求關于
的方程
在區間
上解的個數.(回答上述3個小題都只需直接寫出結果,不需給出演算步驟)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知E,F分別為正方體ABCD﹣A1B1C1D的棱AB,AA1上的點,且AE=AB,AF=
AA1 , M,N分別為線段D1E和線段C1F上的點,則與平面ABCD平行的直線MN有( 。
A.1條
B.3條
C.6條
D.無數條
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】由國家公安部提出,國家質量監督檢驗檢疫總局發布的《車輛駕駛人員血液、呼氣酒精含量閥值與檢驗標準()》于
年
月
日正式實施.車輛駕駛人員酒飲后或者醉酒后駕車血液中的酒精含量閥值見表.經過反復試驗,一般情況下,某人喝一瓶啤酒后酒精在人體血液中的變化規律的“散點圖”見圖,
喝瓶啤酒的情況
且圖表示的函數模型,則該人喝一瓶啤酒后至少經過多長時間才可以駕車(時間以整小時計算)?(參考數據:
,
)
( 。
駕駛行為類型 | 閥值 |
飲酒后駕車 |
|
醉酒后駕車 |
車輛駕車人員血液酒精含量閥值
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成4元;乙公司無底薪,40單以內(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元,假設同一公司送餐員一天的送餐單數相同,現從兩家公司各隨機抽取一名送餐員,并分別記錄其100天的送餐單數,得到如表頻數表: 甲公司送餐員送餐單數頻數表
送餐單數 | 38 | 39 | 40 | 41 | 42 |
天數 | 20 | 40 | 20 | 10 | 10 |
乙公司送餐員送餐單數頻數表
送餐單數 | 38 | 39 | 40 | 41 | 42 |
天數 | 10 | 20 | 20 | 40 | 10 |
(Ⅰ)現從甲公司記錄的100天中隨機抽取兩天,求這兩天送餐單數都大于40的概率;
(Ⅱ)若將頻率視為概率,回答下列問題:
(i)記乙公司送餐員日工資為X(單位:元),求X的分布列和數學期望;
(ii)小明擬到甲、乙兩家公司中的一家應聘送餐員,如果僅從日工資的角度考慮,請利用所學的統計學知識為他作出選擇,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+bx2+cx-1,當x=-2時有極值,且在x=-1處的切線的斜率為-3.
(1)求函數f(x)的解析式.
(2)求函數f(x)在區間[-1,2]上的最大值與最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com