【題目】如圖,已知點 分別是Δ
的邊
的中點,連接
.現將
沿
折疊至Δ
的位置,連接
.記平面
與平面
的交線為
,二面角
大小為
.
(1)證明:
(2)證明:
(3)求平面 與平面
所成銳二面角大小.
科目:高中數學 來源: 題型:
【題目】已知橢圓 :
,右頂點為
,離心率為
,直線
:
與橢圓
相交于不同的兩點
,
,過
的中點
作垂直于
的直線
,設
與橢圓
相交于不同的兩點
,
,且
的中點為
.
(Ⅰ)求橢圓 的方程;
(Ⅱ)設原點 到直線
的距離為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的對稱軸為坐標軸,頂點是坐標原點,準線方程為 ,直線
與拋物線相交于不同的
,
兩點.
(1)求拋物線的標準方程;
(2)如果直線 過拋物線的焦點,求
的值;
(3)如果 ,直線
是否過一定點,若過一定點,求出該定點;若不過一定點,試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是東西方向的公路北側的邊緣線,某公司準備在
上的一點
的正北方向的
處建一倉庫,并在公路同側建造一個正方形無頂中轉站
(其中邊
在
上),現從倉庫
向
和中轉站分別修兩條道路
,
,已知
,且
,設
,
.
(1)求關于
的函數解析式;
(2)如果中轉站四周圍墻(即正方形周長)造價為萬元
,兩條道路造價為
萬元
,問:
取何值時,該公司建中轉圍墻和兩條道路總造價
最低?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業準備投資 萬元興辦一所中學,對當地教育市場進行調查后,得到了如下的數據表格(以班級為單位):
初中 | 26 | 4 |
高中 | 54 | 6 |
第一年因生源和環境等因素,全?偘嗉壷辽 個,至多
個,若每開設一個初、高中班,可分別獲得年利潤
萬元、
萬元,則第一年利潤最大為
A. 萬元 B.
萬元 C.
萬元 D.
萬元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產一種儀器的元件,由于受生產能力和技術水平的限制,會產生一些次品,根據經驗知道,其次品率P與日產量x(萬件)之間大體滿足關系: (其中c為小于6的正常數). (注:次品率=次品數/生產量,如P=0.1表示每生產10件產品,有1件為次品,其余為合格品),已知每生產1萬件合格的元件可以盈利2萬元,但每生產出1萬件次品將虧損1萬元,故廠方希望定出合適的日產量.
(1)試將生產這種儀器的元件每天的盈利額T(萬元)表示為日產量x(萬件)的函數;
(2)當日產量為多少時,可獲得最大利潤?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市為了解游客人數的變化規律,提高旅游服務質量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數據,繪制了下面的折線圖.
根據該折線圖,下列結論錯誤的是( )
A.月接待游客逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】分別求適合下列條件的橢圓的標準方程.
(1)焦點在坐標軸上,且經過點A ( ,-2),B(-2
,1);
(2)與橢圓 有相同焦點且經過點M(
,1).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com