【題目】(本大題滿分12分)
隨著互聯網的快速發展,基于互聯網的共享單車應運而生,某市場研究人員為了了解共享單車運營公司的經營狀況,對該公司最近六個月的市場占有率進行了統計,并繪制了相應的折線圖:
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場占有率與月份代碼
之間的關系,求
關于
的線性回歸方程,并預測
公司2017年4月的市場占有率;
(Ⅱ)為進一步擴大市場,公司擬再采購一批單車,現有采購成本分別為元/輛和1200元/輛的
、
兩款車型可供選擇,按規定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會導致單車使用壽命各不相同,考慮到公司運營的經濟效益,該公司決定先對這兩款車型的單車各100輛進行科學模擬測試,得到兩款單車使用壽命的頻數表如下:
經測算,平均每輛單車每年可以帶來收入500元,不考慮除采購成本之外的其他成本,假設每輛單車的使用壽命都是整數年,且以頻率作為每輛單車使用壽命的概率,如果你是公司的負責人,以每輛單車產生利潤的期望值為決策依據,你會選擇采購哪款車型?
參考公式:回歸直線方程為,其中
,
.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log4(4x+1)+kx(k∈R)是偶函數.
(1)求k的值;
(2)設g(x)=log4,若函數f(x)與g(x)的圖象有且只有一個公共點,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為邊長為2的菱形,
,
,面
面
,點
為棱
的中點.
(1)在棱上是否存在一點
,使得
面
,并說明理由;
(2)當二面角的余弦值為
時,求直線
與平面
所成的角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】容器中有種粒子,若相同種類的兩顆粒子發生碰撞,則變成一顆
粒子;不同種類的兩顆粒子發生碰撞,會變成另外一種粒子. 例如,一顆
粒子和一顆
粒子發生碰撞則變成一顆
粒子.現有
粒子
顆,
粒子
顆,
粒子
顆,如果經過各種兩兩碰撞后,只剩
顆粒子. 給出下列結論:
① 最后一顆粒子可能是粒子
② 最后一顆粒子一定是粒子
③ 最后一顆粒子一定不是粒子
④ 以上都不正確
其中正確結論的序號是________.(寫出所有正確結論的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數f(x)=2x-.
(1)若f(x)=,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如表的列聯表:
男 | 女 | 總計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
算得,.見附表:參照附表,得到的正確結論是( 。
A. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”
B. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關”
C. 有99%以上的把握認為“愛好該項運動與性別有關”
D. 有99%以上的把握認為“愛好該項運動與性別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex-e-x(x∈R且e為自然對數的底數).
(1)判斷函數f(x)的奇偶性與單調性.
(2)解關于t不等式f(x-t)+f(x2-2t)≥0對一切實數x都成立.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com