【題目】在平面直角坐標系xOy中已知橢圓,焦點在x軸上的橢圓
與
的離心率相同,且橢圓
的外切矩形ABCD(兩組對邊分別平行于x軸、y軸)的頂點在橢圓
上.
(1)求橢圓的標準方程.
(2)設為橢圓
上一點(不與點A、B、C、D重合).
①若直線:,求證:直線l與橢圓
相交;
②記①中的直線l與橢圓C1的交點為S、T,求證的面積為定值.
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)當時,求曲線
在點
處的切線方程;
(2)當時,求
在區間
上的最大值和最小值;
(3)當時,若方程
在區間
上有唯一解,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px(0<p<8)的焦點為F點Q是拋物線C上的一點,且點Q的縱坐標為4,點Q到焦點的距離為5.
(1)求拋物線C的方程;
(2)設直線l不經過Q點且與拋物線交于A,B兩點,QA,QB的斜率分別為K1,K2,若K1K2=﹣2,求證:直線AB過定點,并求出此定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在傳染病學中,通常把從致病刺激物侵人機體或者對機體發生作用起,到機體出現反應或開始呈現該疾病對應的相關癥狀時止的這一階段稱為潛伏期. 一研究團隊統計了某地區1000名患者的相關信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數 |
(1)求這1000名患者的潛伏期的樣本平均數x (同一組中的數據用該組區間的中點值作代表) ;
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯表.請將列聯表補充完整,并根據列聯表判斷是否有95%的把握認為潛伏期與患者年齡有關;
潛伏期 | 潛伏期 | 總計 | |
| |||
| |||
總計 |
(3)以這1000名患者的潛伏期超過6天的頻率,代替該地區1名患者潛伏期超過6天發生的概率,每名患者的潛伏期是否超過6天相互獨立,為了深入研究,該研究團隊隨機調查了20名患者,其中潛伏期超過6天的人數最有可能(即概率最大)是多少?
附:
,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知拋物線的準線方程為
.
(1)求p的值;
(2)過拋物線C的焦點的直線l交拋物線C于點A,B,交拋物線C的準線于點P,若A為線段PB的中點,求線段AB的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com