【題目】在傳染病學中,通常把從致病刺激物侵人機體或者對機體發生作用起,到機體出現反應或開始呈現該疾病對應的相關癥狀時止的這一階段稱為潛伏期. 一研究團隊統計了某地區1000名患者的相關信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數 |
(1)求這1000名患者的潛伏期的樣本平均數x (同一組中的數據用該組區間的中點值作代表) ;
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯表.請將列聯表補充完整,并根據列聯表判斷是否有95%的把握認為潛伏期與患者年齡有關;
潛伏期 | 潛伏期 | 總計 | |
| |||
| |||
總計 |
(3)以這1000名患者的潛伏期超過6天的頻率,代替該地區1名患者潛伏期超過6天發生的概率,每名患者的潛伏期是否超過6天相互獨立,為了深入研究,該研究團隊隨機調查了20名患者,其中潛伏期超過6天的人數最有可能(即概率最大)是多少?
附:
,其中
.
科目:高中數學 來源: 題型:
【題目】對于給定的數列,
,設
,即
是
,
,…,
中的最大值,則稱數列
是數列
,
的“和諧數列”.
(1)設,
,求
,
,
的值,并證明數列
是等差數列;
(2)設數列,
都是公比為q的正項等比數列,若數列
是等差數列,求公比q的取值范圍;
(3)設數列滿足
,數列
是數列
,
的“和諧數列”,且
(m為常數,
,2,…,k),求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等差數列{an}的前n項和為Sn,且a3+2S6=77,a10﹣a5=10.
(1)求數列{an}的通項公式;
(2)數列{bn}滿足:b1=1,bn﹣bn﹣1=an﹣n+1(n≥2),求數列{}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖.正四面體ABCD的頂點A,B,C分別在兩兩垂直的三條射線OX,OY,OZ上,則在下列命題中,錯誤的為( 。
A.O﹣ABC是正三棱錐B.二面角D﹣OB﹣A的平面角為
C.直線AD與直線OB所成角為D.直線OD⊥平面ABC
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中已知橢圓,焦點在x軸上的橢圓
與
的離心率相同,且橢圓
的外切矩形ABCD(兩組對邊分別平行于x軸、y軸)的頂點在橢圓
上.
(1)求橢圓的標準方程.
(2)設為橢圓
上一點(不與點A、B、C、D重合).
①若直線:,求證:直線l與橢圓
相交;
②記①中的直線l與橢圓C1的交點為S、T,求證的面積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓的右焦點、右頂點分別為F,A,過原點的直線與橢圓C交于點P、Q(點P在第一象限內),連結PA,QF.若
,
的面積是
面積的3倍.
(1)求橢圓C的標準方程;
(2)已知M為線段PA的中點,連結QA,QM.
①求證:Q,F,M三點共線;
②記直線QP,QM,QA的斜率分別為,
,
,若
,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,為拋物線
上的兩個不同的點,且線段
的中點
在直線
上,當點
的縱坐標為1時,點
的橫坐標為
.
(1)求拋物線的標準方程;
(2)若點在
軸兩側,拋物線
的準線與
軸交于點
,直線
的斜率分別為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的一個焦點坐標為
,一條斜率為
的直線分別交
軸于點
,交橢圓于點
,且點
三等分
.
(1)求該橢圓的方程;
(2)若是第一象限內橢圓上的點,其橫坐標為2,過點
的兩條不同的直線分別交橢圓于點
,且直線
的斜率之積
,求證:直線
恒過定點,并求出定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】回文數指從左向右讀與從右向左讀都一樣的正整數,如22,343,1221,94249等.顯然兩位回文數有9個,即11,22,33,99;三位回文數有90個,即101,121,131,…,191,202,…,999.則四位回文數有______個,位回文數有______個.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com