【題目】已知橢圓的一個焦點坐標為
,一條斜率為
的直線分別交
軸于點
,交橢圓于點
,且點
三等分
.
(1)求該橢圓的方程;
(2)若是第一象限內橢圓上的點,其橫坐標為2,過點
的兩條不同的直線分別交橢圓于點
,且直線
的斜率之積
,求證:直線
恒過定點,并求出定點的坐標.
科目:高中數學 來源: 題型:
【題目】在傳染病學中,通常把從致病刺激物侵人機體或者對機體發生作用起,到機體出現反應或開始呈現該疾病對應的相關癥狀時止的這一階段稱為潛伏期. 一研究團隊統計了某地區1000名患者的相關信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數 |
(1)求這1000名患者的潛伏期的樣本平均數x (同一組中的數據用該組區間的中點值作代表) ;
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯表.請將列聯表補充完整,并根據列聯表判斷是否有95%的把握認為潛伏期與患者年齡有關;
潛伏期 | 潛伏期 | 總計 | |
| |||
| |||
總計 |
(3)以這1000名患者的潛伏期超過6天的頻率,代替該地區1名患者潛伏期超過6天發生的概率,每名患者的潛伏期是否超過6天相互獨立,為了深入研究,該研究團隊隨機調查了20名患者,其中潛伏期超過6天的人數最有可能(即概率最大)是多少?
附:
,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班同學在假期進行社會實踐活動,對歲的人群隨機抽取n人進行了一次當前投資生活方式——“房地產投資”的調查,得到如下統計和各年齡段人數頻率分布直方圖:
(Ⅰ)求,
,
的值;
(Ⅱ)從年齡在歲的“房地產投資”人群中采取分層抽樣法抽取9人參加投資管理學習活動,其中選取3人作為代表發言,記選取的3名代表中年齡在
歲的人數為
,求
的分布列和期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
,
,平面
平面PAD,E是
的中點,F是DC上一點,G是PC上一點,且
,
.
(1)求證:平面平面PAB;
(2)若,
,求直線PB與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,若
的圖象上相鄰兩條對稱軸的距離為
,圖象過點
.
(1)求的表達式和
的遞增區間;
(2)將函數的圖象向右平移
個單位長度,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數
的圖象.若函數
在區間
上有且只有一個零點,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線l:x﹣ty+1=0(t>0)和拋物線C:y2=4x相交于不同兩點A、B,設AB的中點為M,拋物線C的焦點為F,以MF為直徑的圓與直線l相交另一點為N,且滿足|MN||NF|,則直線l的方程為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com