精英家教網 > 高中數學 > 題目詳情

【題目】目前,中國有三分之二的城市面臨垃圾圍城的窘境. 我國的垃圾處理多采用填埋的方式,占用上萬畝土地,并且嚴重污染環境. 垃圾分類把不易降解的物質分出來,減輕了土地的嚴重侵蝕,減少了土地流失. 202051日起,北京市將實行生活垃圾分類,分類標準為廚余垃圾、可回收物、有害垃圾和其它垃圾四類 .生活垃圾中有30%~40%可以回收利用,分出可回收垃圾既環保,又節約資源. 如:回收利用1噸廢紙可再造出0.8噸好紙,可以挽救17棵大樹,少用純堿240千克,降低造紙的污染排放75%,節省造紙能源消耗40%~50.

現調查了北京市5個小區12月份的生活垃圾投放情況,其中可回收物中廢紙和塑料品的投放量如下表:

小區

小區

小區

小區

小區

廢紙投放量(噸)

5

5.1

5.2

4.8

4.9

塑料品投放量(噸)

3.5

3.6

3.7

3.4

3.3

(Ⅰ)從5個小區中任取1個小區,求該小區12月份的可回收物中,廢紙投放量超過5噸且塑料品投放量超過3.5噸的概率;

(Ⅱ)從5個小區中任取2個小區,記12月份投放的廢紙可再造好紙超過4噸的小區個數,求的分布列及期望.

【答案】(Ⅰ);(Ⅱ)詳見解析.

【解析】

(Ⅰ)基本事件的總數為5,隨機事件中含有的基本事件的個數為2,從而可得隨機事件的概率.

(Ⅱ)利用超幾何分布可求X的分布列及期望.

解:(Ⅰ)記該小區12月份的可回收物中廢紙投放量超過5噸且塑料品投放量超過3.5為事件.

由題意,有兩個小區12月份的可回收物中廢紙投放量超過5噸且塑料品投放量超過3.5噸,所以.

(Ⅱ)因為回收利用1噸廢紙可再造出0.8噸好紙,

所以12月份投放的廢紙可再造好紙超過4噸的小區有,共2個小區.

的所有可能取值為0,1,2.

;

;

.

所以的分布列為:

0

1

2

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數且在上的最大值為

1)求函數f(x)的解析式;

(2)判斷函數f(x)在(0,π)內的零點個數,并加以證明

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】河北省高考綜合改革從2018年秋季入學的高一年級學生開始實施,新高考將實行“3+1+2”模式,其中3表示語文、數學、外語三科必選,1表示從物理、歷史兩科中選擇一科,2表示從化學、生物、政治、地理四科中選擇兩科.某校2018級入學的高一學生選科情況如下表:

選科組合

物化生

物化政

物化地

物生政

物生地

物政地

史政地

史政化

史生政

史地化

史地生

史化生

合計

130

45

55

30

25

15

30

10

40

10

15

20

425

100

45

50

35

35

35

40

20

55

15

25

20

475

合計

230

90

105

65

60

50

70

30

95

25

40

40

900

1)完成下面的列聯表,并判斷是否在犯錯誤概率不超過0.01的前提下,認為“選擇物理與學生的性別有關”?

2)以頻率估計概率,從該校2018級高一學生中隨機抽取3名同學,設這三名同學中選擇物理的人數為,求的分布列和數學期望.

選擇物理

不選擇物理

合計

425

475

合計

900

附表及公式:

0.150

0.100

0.050

0.010

2.072

2.706

3.841

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為參數).直線的參數方程為參數).

)求曲線在直角坐標系中的普通方程;

)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,當曲線截直線所得線段的中點極坐標為時,求直線的傾斜角.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】高三年級某班50名學生期中考試數學成績的頻率分布直方圖如圖所示,成績分組區間為:.其中a,b,c成等差數列且.物理成績統計如表.(說明:數學滿分150分,物理滿分100分)

分組

頻數

6

9

20

10

5

1)根據頻率分布直方圖,請估計數學成績的平均分;

2)根據物理成績統計表,請估計物理成績的中位數;

3)若數學成績不低于140分的為“優”,物理成績不低于90分的為“優”,已知本班中至少有一個“優”同學總數為6人,從此6人中隨機抽取3人,記X為抽到兩個“優”的學生人數,求X的分布列和期望值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個調查學生記憶力的研究團隊從某中學隨機挑選100名學生進行記憶測試,通過講解100個陌生單詞后,相隔十分鐘進行聽寫測試,間隔時間(分鐘)和答對人數的統計表格如下:

時間(分鐘)

10

20

30

40

50

60

70

80

90

100

答對人數

98

70

52

36

30

20

15

11

5

5

1.99

1.85

1.72

1.56

1.48

1.30

1.18

1.04

0.7

0.7

時間與答對人數的散點圖如圖:

附:,,,對于一組數據,……,,其回歸直線的斜率和截距的最小二乘估計分別為:,.請根據表格數據回答下列問題:

1)根據散點圖判斷,,哪個更適宣作為線性回歸類型?(給出判斷即可,不必說明理由)

2)根據(1)的判斷結果,建立的回歸方程;(數據保留3位有效數字)

3)根據(2)請估算要想記住的內容,至多間隔多少分鐘重新記憶一遍.(參考數據:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下圖來自古希臘數學家希波克拉底所研究的幾何圖形.此圖由三個半圓構成,三個半圓的直徑分別為直角三角形ABC的斜邊BC,直角邊AB,ACABC的三邊所圍成的區域記為I,黑色部分記為II,其余部分記為III.在整個圖形中隨機取一點,此點取自I,II,III的概率分別記為p1,p2p3,則

A. p1=p2 B. p1=p3

C. p2=p3 D. p1=p2+p3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線,過其焦點的直線與拋物線相交于、兩點,滿足.

1)求拋物線的方程;

2)已知點的坐標為,記直線、的斜率分別為,,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】今年由于豬肉漲價太多,更多市民選擇購買雞肉、鴨肉、魚肉等其它肉類.某天在市場中隨機抽出100名市民調查,其中不買豬肉的人有30位,買了肉的人有90位,買豬肉且買其它肉的人共30位,則這一天該市只買豬肉的人數與全市人數的比值的估計值為____.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视