【題目】某地區擬建立一個藝術搏物館,采取競標的方式從多家建筑公司選取一家建筑公司,經過層層篩選,甲、乙兩家建筑公司進入最后的招標.現從建筑設計院聘請專家設計了一個招標方案:兩家公司從6個招標總是中隨機抽取3個總題,已知這6個招標問題中,甲公司可正確回答其中4道題目,而乙公司能正面回答每道題目的概率均為 ,甲、乙兩家公司對每題的回答都是相獨立,互不影響的.
(1)求甲、乙兩家公司共答對2道題目的概率;
(2)請從期望和方差的角度分析,甲、乙兩家哪家公司競標成功的可能性更大?
【答案】
(1)解:由題意可知,所求概率
(2)解:設甲公司正確完成面試的題數為X,則X的取值分別為1,2,3. ,
,
.
則X的分布列為:
X | 1 | 2 | 3 |
P |
∴ .
設乙公司正確完成面試的題為Y,則Y取值分別為0,1,2,3. ,
,
,
則Y的分布列為:
Y | 0 | 1 | 2 | 3 |
P |
∴ .(或∵
,∴
)
.(
)
由E(X)=D(Y),D(X)<D(Y)可得,甲公司競標成功的可能性更大
【解析】(1)利用獨立重復試驗的概率公式求解甲、乙兩家公司共答對2道題目的概率.(2)設甲公司正確完成面試的題數為X,則X的取值分別為1,2,3.求出概率,得到X的分布列求解期望;乙公司正確完成面試的題為Y,則Y取值分別為0,1,2,3.求出概率得到分布列,求出期望即可.
科目:高中數學 來源: 題型:
【題目】已知橢圓過點
,且離心率
(1)求橢圓的標準方程
(2)是否存在過點的直線
交橢圓與不同的兩點
,且滿足
(其中
為坐標原點)。若存在,求出直線
的方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線C:y2=4x的焦點為F,準線為l,P為拋物線C上一點,且P在第一象限,PM⊥l于點M,線段MF與拋物線C交于點N,若PF的斜率為 ,則
=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)對定義域內的任意x1 , x2 , 當f(x1)=f(x2)時,總有x1=x2 , 則稱函數f(x)為單純函數,例如函數f(x)=x是單純函數,但函數f(x)=x2不是單純函數.若函數 為單純函數,則實數m的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)= +ln(
+x)+
cos xdx在區間[﹣k,k](k>0)上的值域為[m,n],則m+n的值是( )
A.0
B.2
C.4
D.6
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=3,an+1=2an﹣n+1,數列{bn}滿足b1=2,bn+1=bn+an﹣n.
(1)證明:{an﹣n}為等比數列;
(2)數列{cn}滿足 ,求數列{cn}的前n項和Tn , 求證:Tn
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com