精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系中, 分別為橢圓 的左、右焦點, 為短軸的一個端點, 是橢圓上的一點,滿足,且的周長為.

(1)求橢圓的方程;

(2)設點是線段上的一點,過點且與軸不垂直的直線交橢圓兩點,若是以為頂點的等腰三角形,求點到直線距離的取值范圍.

【答案】(1)(2)

【解析】試題分析:(1)由已知,設,則, ,由此能求出橢圓的方程;(2)設點,( ),直線的方程為,k≠0,由,得: ,由此利用韋達定理、中點坐標公式、點到直線的距離公式,結合已知條件能求出點到直線距離的取值范圍.

試題解析:(1)由已知,設,即

得:

的周長為

又①②得: ∴所求橢圓的方程為:

(2)設點,直線的方程為

消去,得:

, 中點為

是以為頂點的等腰三角形 ∴

設點到直線距離為

即點到直線距離的取值范圍是。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=mx1 , g(x)=﹣1+logmx(m>0,m≠1),有如下兩個命題:
p:f(x)的定義域和g[f(x)]的值域相等.
q:g(x)的定義域和f[g(x)]的值域相等.
則(
A.命題p,q都正確
B.命題p正確,命題q不正確
C.命題p,q都不正確
D.命題q不正確,命題p正確

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】自駕游從地到地有甲乙兩條線路,甲線路是,乙線是,其中段、段、段都是易堵車路段.假設這三條路段堵車與否相互獨立.這三條路段的堵車概率及平均堵車時間如表1所示.經調查發現,堵車概率上變化, 上變化.在不堵車的情況下.走線路甲需汽油費500元,走線路乙需汽油費545元.而每堵車1小時,需多花汽油費20元.路政局為了估計段平均堵車時間,調查了100名走甲線路的司機,得到表2數據.

CD段

EF段

GH段

堵車概率

平均堵車時間

(單位:小時)

2

1

(表1)

堵車時間(單位:小時)

頻數

8

6

38

24

24

(表2)

(1)求段平均堵車時間的值.

(2)若只考慮所花汽油費期望值的大小,為了節約,求選擇走甲線路的概率.

(3)在(2)的條件下,某4名司機中走甲線路的人數記為X,求X的數學期望。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)(x∈R)為奇函數,f(1)= ,f(x+2)=f(x)+f(2),則f(5)=(
A.0
B.1
C.
D.5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲廠根據以往的生產銷售經驗得到下面有關生產銷售的統計規律:每生產產品x(百臺),其總成本為G(x)(萬元),其中固定成本為3萬元,并且每生產1百臺的生產成本為1萬元(總成本=固定成本+生產成本),銷售收入R(x)= ,假定該產品產銷平衡(即生產的產品都能賣掉),根據上述統計規律,請完成下列問題:
(1)寫出利潤函數y=f(x)的解析式(利潤=銷售收入﹣總成本);
(2)甲廠生產多少臺新產品時,可使盈利最多?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在極坐標系中,圓的極坐標方程為.若以極點為原點,極軸所在直線為軸建立平面直角坐標系.

)求圓的參數方程;

)在直角坐標系中,點是圓上動點,試求的最大值,并求出此時點的直角坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數, ).

(Ⅰ)求函數的單調增區間;

(Ⅱ)當時,記,是否存在整數,使得關于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從一批土雞蛋中,隨機抽取n個得到一個樣本,其重量(單位:克)的頻數分布表如表:

分組(重量)

[80,85)

[85,90)

[90,95)

[95,100]

頻數(個)

10

50

m

15

已知從n個土雞蛋中隨機抽取一個,抽到重量在在[90,95)的土雞蛋的根底為
(1)求出n,m的值及該樣本的眾數;
(2)用分層抽樣的方法從重量在[80,85)和[95,100)的土雞蛋中共抽取5個,再從這5個土雞蛋中任取2 個,其重量分別是g1 , g2 , 求|g1﹣g2|≥10概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

若函數處的切線平行于直線,求實數a的值;

)判斷函數在區間上零點的個數;

)在()的條件下,若在上存在一點,使得成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视