精英家教網 > 高中數學 > 題目詳情

【題目】已知數列{an}為等比數列, 公比為 為數列{an}的前n項和.

(1)若;

(2)若調換的順序后能構成一個等差數列,求的所有可能值;

(3)是否存在正常數,使得對任意正整數n,不等式總成立?若存在,求出的范圍,若不存在,請說明理由.

【答案】1172 3

【解析】試題分析:(1)先根據條件求公比,再利用等比數列求和公式求比值(2)分類討論三個數成等差情況,依次求出對應公比(3)化簡不等式得,代入n=1得,代入n=2得 ,再由 ,

試題解析:解:(1)因為所以,

所以(舍去).

所以

(2)若成等差數列,

,解得或1(舍去);

成等差數列,

,解得或1(舍去);

成等差數列,

,解得(舍去).

綜上,

(3)由,可得,

故等價于恒成立.

因為 所以 得到

時, 不可能成立.

時,另 ,得,解得

因為 ,所以

即當時, ,所以不可能成立.

時,由 ,

,所以

即當時, 不成立.

時,

所以當時, 恒成立.

綜上,存在正常數,使得對任意正整數n,不等式總成立,

的取值范圍為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】是定義在D上的函數,若對D中的任意兩數),恒有,則稱為定義在D上的C函數.

(1)試判斷函數是否為定義域上的C函數,并說明理由;

(2)若函數R上的奇函數,試證明不是R上的C函數;

(3)是定義在D上的函數,若對任何實數以及D中的任意兩數),恒有,則稱為定義在D上的π函數. 已知R上的π函數,m是給定的正整數,,,. 對于滿足條件的任意函數,試求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,以為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為, 是曲線與直線 )的交點(異于原點).

(1)寫出, 的直角坐標方程;

(2)求過點和直線垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,設關于的方程個不同的實數解,則的所有可能的值為( )

A. 3 B. 1或3 C. 4或6 D. 3或4或6

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】袋子里有編號為的五個球,某位教師從袋中任取兩個不同的球. 教師把所取兩球編號的和只告訴甲,其乘積只告訴乙,讓甲、乙分別推斷這兩個球的編號.

甲說:我無法確定.”

乙說:我也無法確定.”

甲聽完乙的回答以后,甲又說:我可以確定了.”

根據以上信息, 你可以推斷出抽取的兩球中

A. 一定有3號球 B. 一定沒有3號球 C. 可能有5號球 D. 可能有6號球

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線Cy2=2px(p>0)的焦點F與橢圓Γy2=1的一個焦點重合,M(x0,2)在拋物線上過焦點F的直線l交拋物線于A,B兩點

()求拋物線C的方程以及|MF|的值;

()記拋物線C的準線與x軸交于點H,試問是否存在常數λR,使得|HA|2+|HB|2都成立?若存在,求出實數λ的值; 若不存在,請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯網共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中抽取了200人進行抽樣分析,得到表格:(單位:人)

經常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(1)根據以上數據,能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?

(2)現從所抽取的30歲以上的網友中利用分層抽樣的方法再抽取5人.

(i)分別求這5人中經常使用、偶爾或不用共享單車的人數;

(ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用共享單車的概率.

參考公式: ,其中.

參考數據:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2017·南充調研)如圖,在長方體ABCDA1B1C1D1中,AB=11,AD=7,AA1=12.一質點從頂點A射向點E(4,3,12),遇長方體的面反射(反射服從光的反射原理),將第i-1次到第i次反射點之間的線段記為Li(i=2,3,4),L1AE,將線段L1,L2,L3L4豎立放置在同一水平線上,則大致的圖形是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中國古代數學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , , 依次成公比為2的等比數列,且

B. , , 依次成公比為2的等比數列,且

C. , , 依次成公比為的等比數列,且

D. , , 依次成公比為的等比數列,且

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视