【題目】如圖,四棱錐P﹣ABCD的側面PAD是正三角形,底面ABCD為菱形,A點E為AD的中點,若BE=PE.
(1)求證:PB⊥BC;
(2)若∠PEB=120°,求二面角A﹣PB﹣C的余弦值.
【答案】
(1)證明:由BE=PE,AB=PA,AE=AE,得△AEP≌△AEB,
∴∠EAB=60°,且AD⊥BE,
又∵AD⊥PE,
∴AD⊥平面PBE,
∵PB平面PBE,得AD⊥PB,
又AD∥BC,
∴PB⊥BC.
(2)解:如圖,過P作PO⊥平面ABCD,交BE延長線于O,
以O為坐標原點,過O作DA的平行線為x軸,OB為y軸,OP為z軸,建立空間直角坐標系,
P(0,0, ),B(0,
,0),PB的中占點G(0,
,
),連結AG,
又A(1, ,0),C(﹣2,
,0),由此得到
=(1,﹣
,﹣
),
=(0,
),
=(﹣2,0,0),
∴ =0,
=0,
∴ ,
,
∵ 的夾角為θ等于所求二面角二面角A﹣PB﹣C的平面角,
∴cos =
=﹣
.
∴二面角A﹣PB﹣C的余弦值為﹣ .
【解析】(1)推導出∠EAB=60°,且AD⊥BE,AD⊥PE,從而AD⊥平面PBE,進而AD⊥PB,由此能證明PB⊥BC.(2)過P作PO⊥平面ABCD,交BE延長線于O,以O為坐標原點,過O作DA的平行線為x軸,OB為y軸,OP為z軸,建立空間直角坐標系,利用向量法能求出二面角二面角A﹣PB﹣C的余弦值.
【考點精析】掌握空間中直線與直線之間的位置關系是解答本題的根本,需要知道相交直線:同一平面內,有且只有一個公共點;平行直線:同一平面內,沒有公共點;異面直線: 不同在任何一個平面內,沒有公共點.
科目:高中數學 來源: 題型:
【題目】已知雙曲線的右焦點為
,
是雙曲線C上的點,
,連接
并延長
交雙曲線C與點P,連接
,若
是以
為頂點的等腰直角三角形,則雙曲線C的漸近線方程為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數,滿足
,
.
(1)求函數的解析式;
(2)若關于的不等式
在
上有解,求實數
的取值范圍;
(3)若函數的兩個零點分別在區間
和
內,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓C: (a>b>0)的一條準線方程為x=
,離心率為
.
(1)求橢圓C的方程;
(2)如圖,設A為橢圓的上頂點,過點A作兩條直線AM,AN,分別與橢圓C相交于M,N兩點,且直線MN垂直于x軸.
① 設直線AM,AN的斜率分別是k1, k2,求k1k2的值;
② 過M作直線l1⊥AM,過N作直線l2⊥AN,l1與l2相交于點Q.試問:點Q是否在一條定直線上?若在,求出該直線的方程;若不在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,已知橢圓
的離心率為
,左右焦點分別為
和
,以點
為圓心,以
為半徑的圓與以點
為圓心,以
為半徑的圓相交,且交點在橢圓
上.
()求橢圓
的方程.
()設橢圓
,
為橢圓
上任意一點,過點
的直線
交橢圓
于
、
兩點,射線
交橢圓
于點
.
①求的值.
②(理科生做)求面積的最大值.
③(文科生做)當時,
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業一天中不同時刻的用電量(萬千瓦時)關于時間
(小時,
)的函數
近似滿足
,如圖是函數
的部分圖象(
對應凌晨
點).
(Ⅰ)根據圖象,求的值;
(Ⅱ)由于當地冬季霧霾嚴重,從環保的角度,既要控制火力發電廠的排放量,電力供應有限;又要控制企業的排放量,于是需要對各企業實行分時拉閘限電措施.已知該企業某日前半日能分配到的供電量 (萬千瓦時)與時間
(小時)的關系可用線性函數模型
模擬.當供電量小于該企業的用電量時,企業就必須停產.初步預計停產時間在中午11點到12點間,為保證該企業既可提前準備應對停產,又可盡量減少停產時間,請從這個初步預計的時間段開始,用二分法幫其估算出精確到15分鐘的停產時間段.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機抽取50個作為樣本,稱出它們的重量單位:克
,重量分組區間為
,
,
,
,由此得到樣本的重量頻率分布直方圖
如圖
.
(1)求的值,并根據樣本數據,試估計盒子中小球重量的眾數與平均值;
(2)從盒子中隨機抽取3個小球,其中重量內的小球個數為
,求
的分布列和數學期望.(以直方圖中的頻率作為概率)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com