精英家教網 > 高中數學 > 題目詳情

已知函數.
(1)若曲線經過點,曲線在點處的切線與直線垂直,求的值;
(2)在(1)的條件下,試求函數為實常數,)的極大值與極小值之差;
(3)若在區間內存在兩個不同的極值點,求證:.

(1)
(2)當時,;
時,
(3).

解析試題分析:(1)利用導數的幾何意義,明確曲線在點處的切線的斜率為,建立方程
,再根據曲線經過點,得到方程,解方程組即得所求.
(2)利用“表解法”,確定函數的極值,注意討論,的不同情況;
(3)根據在區間內存在兩個極值點,得到,
內有兩個不等的實根.
利用二次函數的圖象和性質建立不等式組 求的范圍.
試題解析:(1)
直線的斜率為,曲線在點處的切線的斜率為,
 ①
曲線經過點, ②
由①②得:              3分
(2)由(1)知:,, 由,或.
,即時,,變化如下表








+
0
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設f(x)=,其中a為正實數.
(1)當a=時,求f(x)的極值點.
(2)若f(x)為[,]上的單調函數,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)若存在單調遞減區間,求實數的取值范圍;
(2)若,求證:當時,恒成立;
(3)設,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ax2-(2a+1)x+2ln xa∈R.
(1)若曲線yf(x)在x=1和x=3處的切線互相平行,求a的值;
(2)求f(x)的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若,求函數的單調區間;
(2)若以函數圖像上任意一點為切點的切線的斜率恒成立,求實數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ax3x2cxd(a,cd∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求ac,d的值;
(2)若h(x)=x2bx,解不等式f′(x)+h(x)<0.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ln x-1.
(1)求函數f(x)的單調區間;
(2)設m∈R,對任意的a∈(-1,1),總存在x0∈[1,e],使得不等式maf(x0)<0成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數處存在極值.
(1)求實數的值;
(2)函數的圖像上存在兩點A,B使得是以坐標原點O為直角頂點的直角三角形,且斜邊AB的中點在軸上,求實數的取值范圍;
(3)當時,討論關于的方程的實根個數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

經調查統計,某種型號的汽車在勻速行駛中,每小時的耗油量(升)關于行駛速度(千米/時)的函數可表示為.已知甲、乙兩地相距千米,在勻速行駛速度不超過千米/時的條件下,該種型號的汽車從甲地 到乙地的耗油量記為(升).
(Ⅰ)求函數的解析式;
(Ⅱ)討論函數的單調性,當為多少時,耗油量為最少?最少為多少升?

查看答案和解析>>
久久精品免费一区二区视