【題目】已知函數是定義在R上的偶函數,且當
時,
(
).
(1)當時,求
的表達式:
(2)求在區間
的最大值
的表達式;
(3)當時,若關于x的方程
(a,
)恰有10個不同實數解,求a的取值范圍.
【答案】(1);(2)
;(3)
【解析】
(1)根據偶函數的特點,可知,可得結果.
(2)采用分類討論方法,與
,去掉絕對值研究函數
在區間
上的單調性,可得結果.
(3)畫出函數圖像,利用換元法
,得出
與
,可轉化為
兩個根為
,可得
,最后計算可得結果.
(1)令,則
由當時,
所以
又函數是定義在R上的偶函數,
即
所以
所以當時,
(2)當時,
如圖
可知函數的最大值在
或
處取得,
所以,
①若,此時
②若,此時
;
當時,
,對稱軸為
③若,即
時,則
,
④若,即
時,則
綜上,得
(3)當時,
如圖
令
由的圖象可知,
當時,方程
有兩解;
當時,方程
有四解;
當時,方程
有六解;
當時,方程
有三解;
當時,方程
無解.
要使方程(a,
)
恰有10個不同實數解,
則關于t的方程的一個根為1,
另一個根,設
,則有
則
所以a的取值范圍為.
科目:高中數學 來源: 題型:
【題目】已知長度為的線段
的兩個端點
分別在
軸和
軸上運動,動點
滿足
,設動點
的軌跡為曲線
.
(1)求曲線的方程;
(2)過點,且斜率不為零的直線
與曲線
交于兩點
,在
軸上是否存在定點
,使得直線
與
的斜率之積為常數?若存在,求出定點
的坐標以及此常數;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,且橢圓上存在一點
,滿足
.
(1)求橢圓的標準方程;
(2)過橢圓右焦點
的直線
與橢圓
交于不同的兩點
,求
的內切圓的半徑的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線E:-
=1(a>0,b>0)的右頂點為A,O為坐標原點,M為OA的中點,若以AM為直徑的圓與E的漸近線相切,則雙曲線E的離心率等于( )
A.B.
C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線(
為參數),曲線
(
為參數).
(1)設與
相交于
兩點,求
;
(2)若把曲線上各點的橫坐標壓縮為原來的
倍,縱坐標壓縮為原來的
倍,得到曲線
,設點
是曲線
上的一個動點,求它到直線
的距離的最大時,點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在中國,不僅是購物,而且從共享單車到醫院掛號再到公共繳費,日常生活中幾乎全部領域都支持手機支付.出門不帶現金的人數正在迅速增加。中國人民大學和法國調查公司益普索合作,調查了騰訊服務的6000名用戶,從中隨機抽取了60名,統計他們出門隨身攜帶現金(單位:元)如莖葉圖如示,規定:隨身攜帶的現金在100元以下(不含100元)的為“手機支付族”,其他為“非手機支付族”.
(1)根據上述樣本數據,將列聯表補充完整,并判斷有多大的把握認為“手機支付族”與“性別”有關?
(2)用樣本估計總體,若從騰訊服務的用戶中隨機抽取3位女性用戶,這3位用戶中“手機支付族”的人數為,求隨機變量
的期望和方差;
(3)某商場為了推廣手機支付,特推出兩種優惠方案,方案一:手機支付消費每滿1000元可直減100元;方案二:手機支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5折.如果你打算用手機支付購買某樣價值1200元的商品,請從實際付款金額的數學期望的角度分析,選擇哪種優惠方案更劃算?
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達圖.圖中A點表示十月的平均最高氣溫約為15℃,B點表示四月的平均最低氣溫約為5℃.下面敘述不正確的是 ( )
A. 各月的平均最低氣溫都在0℃以上
B. 七月的平均溫差比一月的平均溫差大
C. 三月和十一月的平均最高氣溫基本相同
D. 平均最高氣溫高于20℃的月份有5個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com