【題目】已知二次函數的定義域為
恰是不等式
的解集,其值域為
,函數
的定義域為
,值域為
.
(1)求函數定義域為
和值域
;
(2)是否存在負實數,使得
成立?若存在,求負實數
的取值范圍;若不存在,請說明理由;
(3)若函數在定義域
上單調遞減,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】 已知函數f(x)=|x+a|+|x-2|.
(1)當a=-3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了配合今年上海迪斯尼樂園工作,某單位設計了統計人數的數學模型,以
表示第
個時刻進入園區的人數;以
表示第
個時刻離開園區的人數.設定以15分鐘為一個計算單位,上午9點15分作為第1個計算人數單位,即
;9點30分作為第2個計算單位,即
;依次類推,把一天內從上午9點到晚上8點15分分成45個計算單位(最后結果四舍五入,精確到整數).
(1)試計算當天14點至15點這1小時內進入園區的游客人數、離開園區的游客人數
各為多少?
(2)從13點45分(即)開始,有游客離開園區,請你求出這之后的園區內游客總人數最多的時刻,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某沿海城市的海邊有兩條相互垂直的直線型公路l1、l2,海岸邊界MPN近似地看成一條曲線段.為開發旅游資源,需修建一條連接兩條公路的直線型觀光大道AB,且直線AB與曲線MPN有且僅有一個公共點P(即直線與曲線相切),如圖所示.若曲線段MPN是函數圖象的一段,點M到l1、l2的距離分別為8千米和1千米,點N到l2的距離為10千米,以l1、l2分別為x、y軸建立如圖所示的平面直角坐標系xOy,設點P的橫坐標為p.
(1)求曲線段MPN的函數關系式,并指出其定義域;
(2)若某人從點O沿公路至點P觀景,要使得沿折線OAP比沿折線OBP的路程更近,求p的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一研學實踐活動小組利用課余時間,對某公司1月份至5月份銷售某種產品的銷售量及銷售單價進行了調查,月銷售單價(單位:元)和月銷售量
(單位:百件)之間的一組數據如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 |
月銷售單價 | 1.6 | 1.8 | 2 | 2.2 | 2.4 |
月銷售量 | 10 | 8 | 7 | 6 | 4 |
(1)根據1至5月份的數據,求出關于
的回歸直線方程;
(2)預計在今后的銷售中,月銷售量與月銷售單價仍然服從(1)中的關系,若該種產品的成本是1元/件,那么該產品的月銷售單價應定為多少元才能獲得最大月利潤?(注:利潤=銷售收入-成本)
(回歸直線方程,其中
.參考數據:
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列的首項為p,公差為
,對于不同的自然數
,直線
與
軸和指數函數
的圖象分別交于點
與
(如圖所示),記
的坐標為
,直角梯形
、
的面積分別為
和
,一般地記直角梯形
的面積為
.
(1)求證:數列是公比絕對值小于1的等比數列;
(2)設的公差
,是否存在這樣的正整數
,構成以
,
,
為邊長的三角形?并請說明理由;
(3)設的公差
為已知常數,是否存在這樣的實數p使得(1)中無窮等比數列
各項的和
?并請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,、
是兩個垃圾中轉站,
在
的正東方向
千米處,
的南面為居民生活區.為了妥善處理生活垃圾,政府決定在
的北面建一個垃圾發電廠
.垃圾發電廠
的選址擬滿足以下兩個要求(
、
、
可看成三個點):①垃圾發電廠到兩個垃圾中轉站的距離與它們每天集中的生活垃圾量成反比,比例系數相同;②垃圾發電廠應盡量遠離居民區(這里參考的指標是點
到直線
的距離要盡可能大).現估測得
、
兩個中轉站每天集中的生活垃圾量分別約為
噸和
噸.設
.
(1)求(用
的表達式表示);
(2)垃圾發電廠該如何選址才能同時滿足上述要求?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列六個命題:
(1)若,則函數
的圖像關于直線
對稱.
(2)與
的圖像關于直線
對稱.
(3)的反函數與
是相同的函數.
(4)無最大值也無最小值.
(5)的最小正周期為
.
(6)有對稱軸兩條,對稱中心有三個.
則正確命題的個數是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com