【題目】已知函數有兩個零點
.
(1)求的取值范圍;
(2)記的極值點為
,求證:
.
【答案】(1)(2)見解析
【解析】
(1)求導得,分類討論求出函數的單調性,從而可求出答案;
(2)由題意得,則
,令函數
,則
,利用導數可求得
,從而可得
,可得
,要證
,只需
,令
,即證
,令
,求導后得函數的單調性與最值,由此可證結論.
解:(1)因為,
當時,
,
在
單調遞增,至多只有一個零點,不符合題意,舍去;
當時,若
,則
;若
,則
,
所以在
單調遞增,在
單調遞減,
所以,
因為有兩個零點,所以必須
,則
,
所以,解得
,
又因為時,
;
時,
,
所以當時,
在
和
各有一個零點,符合題意,
綜上,;
(2)由(1)知,且
,
因為的兩個零點為
,所以
,所以
,
解得,令
所以
,
令函數,則
,
當時,
;當
時,
;
所以在
單調遞增,在
單調遞減,
所以,所以
,所以
,
因為,又因為
,所以
,
所以,即
,
要證,只需
,
即證,即證
,即證
,
令,再令
,即證
,
令,則
,
所以在
單調遞增,所以
,
所以,原題得證.
科目:高中數學 來源: 題型:
【題目】在極坐標系中,已知曲線:
和曲線
:
,以極點
為坐標原點,極軸為
軸非負半軸建立平面直角坐標系.
(1)求曲線和曲線
的直角坐標方程;
(2)若點是曲線
上一動點,過點
作線段
的垂線交曲線
于點
,求線段
長度的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】紅鈴蟲是棉花的主要害蟲之一,能對農作物造成嚴重傷害,每只紅鈴蟲的平均產卵數y和平均溫度x有關,現收集了以往某地的7組數據,得到下面的散點圖及一些統計量的值.(表中)
平均溫度 | 21 | 23 | 25 | 27 | 29 | 32 | 35 | ||
平均產卵數 | 7 | 11 | 21 | 24 | 66 | 115 | 325 | ||
27.429 | 81.286 | 3.612 | 40.182 | 147.714 | |||||
(1)根據散點圖判斷,與
(其中
自然對數的底數)哪一個更適宜作為平均產卵數y關于平均溫度x的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結果及表中數據,求出y關于x的回歸方程.(計算結果精確到小數點后第三位)
(2)根據以往統計,該地每年平均溫度達到28℃以上時紅鈴蟲會造成嚴重傷害,需要人工防治,其他情況均不需要人工防治記該地每年平均溫度達到28℃以上的概率為.
①記該地今后5年中,恰好需要3次人工防治的概率為,求
的最大值,并求出相應的概率p.
②當取最大值時,記該地今后5年中,需要人工防治的次數為X,求X的數學期望和方差.
附:線性回歸方程系數公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分13分)
如圖,已知拋物線,過點
任作一直線與
相交于
兩點,過點
作
軸的平行線與直線
相交于點
(
為坐標原點).
(1)證明:動點在定直線上;
(2)作的任意一條切線
(不含
軸)與直線
相交于點
,與(1)中的定直線相交于點
,證明:
為定值,并求此定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M為線段BF上一點,且DM⊥平面ACE.
(1)求BM的長;
(2)求二面角A﹣DM﹣B的余弦值的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,圓
,點
,過
的直線
與圓
交于點
,過
做直線
平行
交
于點
.
(1)求點的軌跡
的方程;
(2)過的直線與
交于
、
兩點,若線段
的中點為
,且
,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E:y2=1(m>1)的離心率為
,過點P(1,0)的直線與橢圓E交于A,B不同的兩點,直線AA0垂直于直線x=4,垂足為A0.
(Ⅰ)求m的值;
(Ⅱ)求證:直線A0B恒過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐S-ABCD中,四邊形ABCD菱形,,平面
平面 ABCD,
.E,F 分別是線段 SC,AB 上的一點,
.
(1)求證:平面SAD;
(2)求平面DEF與平面SBC所成銳二面角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,平面
平面PCD,底面ABCD為梯形,
,
,M為PD的中點,過A,B,M的平面與PC交于N.
,
,
,
.
(1)求證:N為PC中點;
(2)求證:平面PCD;
(3)T為PB中點,求二面角的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com